
/»6

Prime Computer, Inc.

DOC4302-190P
CPL User's Guide
Revision 19.0

C P L User's Guide

DOC4302-190

Revision 19

by

Alice Landy

This guide documents the software operation of the Prime Computer and
its supporting systems and utilities as implemented at Master Disk
Revision Level 19 (Rev. 19).

Prime Computer, Inc.
500 Old Connecticut Path

Framingham, Massachusetts 01701

COPYRIGHT INFORMATION

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer
Corporation. Prime Computer Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Copyright © 1982 by
Prime Computer, Incorporated
500 Old Connecticut Path

Framingham, Massachusetts 01701

PRIME and PRIMDS are registered trademarks of Prime Computer, Inc.

PRIMENET, RINGNET, PRIME INFORMATION, and THE PROGRAMMER'S COMPANION
are trademarks of Prime Computer, Inc.

HOW TO ORDER TECHNICAL DOCUMENTS

U.S. Customers

Software Distr ibut ion
Prime Computer, Inc.
1 New York Ave.
Framingham, MA 01701
(617) 879-2960 X2053, 2054

Prime Employees

Communications Services
MS 15-13, Prime Park
Natick, MA 01760
(617) 655-8000, X4837

Customers Outside U.S. PRIME INFORMATION

Contact your local Prime
subsidiary or d i s t r i bu to r .

Contact your PRIME
INFORMATION dealer .

l i

PRINTING HISTORY — CPL User 's Guide

Edition Date Number Documents Rev,

F i r s t Edition January, 1981 IDR4302 18.1
Second Edition July , 1982 DOC4302-190 19.0

Changes made to the t ex t since the l a s t p r in t ing have been
indicated with change bars in the margin. Change bars with
numbers ind ica te technical changes. Those without numbers
indica te rewrites for c l a r i f i c a t i on or addi t ional information.

SUGGESTION BOX

All correspondence on suggested changes t o t h i s document should be
directed t o :

Alice Landy
Technical Publications Department
Prime Computer, Inc.
500 Old Connecticut Path
Framingham, Massachusetts 01701

i n

PART I - THE BASIC SUBSET

1 INTRODUCTION

PART I I - TOE INTERMEDIATE SUBSET

4 VARIABLES IN CPL

Contents

ABOUT THIS BOOK lx

What Is CPL?
How Might You Use CPL?
Naming CPL Programs
Running CPL Programs
Variables, Functions, and
Directives in CPL Programs

How Does CPL Work?
CPL Features
Who Wants Which Features?

1-1
1-1
1-2
1-2

1-3
1-3
1-8
1-8

2 THE BASICS OF CPL

PRIMDS Commands in CPL Programs 2-1
Using Variables in CPL Programs 2-5
Decision-Making in CPL Programs 2-7
Other Conditional Actions 2-15
Using CPL with Subsystems:
&DATA Groups 2-18

When Errors Occur 2-23
How CPL Programs End:
The &RETURN Directive 2-24

When One CPL Program Runs Another 2-24

3 CPL FORMAT

CPL Format Rules 3-1

I n t r o d u c t i o n
The &SETVAR D i r e c t i v e
I n t e g e r Values fo r V a r i a b l e s
Logical Values for V a r i a b l e s

4 -1
4-1
4-3
4-4

Local and Global Variables 4-5

PRIMOS Commands 4-7

5 TERMINAL INPUT AND OUTPUT IN CPL

Overview 5-1

Terminal Input 5-2
Terminal Output 5-8

6 ARGUMENTS WITH TYPE-CHECKING AND DEFAULT VALUES

Introduction 6-1
Type Checking and Default
Specification 6-2

Using REST Arguments 6-6

7 PROCESSING GROUPS OF FILES

Grouping Files and Directories 7-1
Filename Conventions 7-1
Using Suffixes: The BEFORE and
AFTER Functions 7-2

Wildcards 7-4
The WILD Function 7-6
Using the WILD Function in Loops 7-9

8 DECISION-MAKING IN CPL PROGRAMS

Control Directives 8-1
Single &IF Statements 8-1
Nested &IF Statements 8-3
The &SELECT Directive 8-6

9 LOOPS IN CPL

Using Loops 9-1
Overview 9-1
Counted Loops 9-7
&D0 &WHILE Loops 9-9
&D0 &UNTIL Loops 9-10
Loops that Combine Counting, &WHILE,
and &UNTIL Tests 9-11

&REPEAT Loops 9-11
&DO &LIST Loops 9-11
&DO &ITEMS Loops 9-14

10 DEBUGGING AND ERROR HANDLING IN CPL

Encountering Errors 10-1
Debugging CPL Programs 10-1
&NO EXECUTE/&EXECUTE 10-2
&ECHO/&NO ECHO 10-4
&WATCH/&NO WATCH 10-5
Error Handling 10-6

VI

PART III - FULL CPL

11 EXPRESSION EVALUATION IN CPL

Introduction 11-1
Variables 11-2
Functions 11-3
Quoted Strings 11-4
Using Abbreviations 11-7
Evaluation of Expressions 11-7

12 COMMAND FUNCTIONS

The CALC Function 12-1
Other Arithmetic Functions 12-3
Str ing Functions 12-4
F i l e System Functions 12-7
Miscellaneous Functions 12-11

13 ARGUMENTS

Introduction 13-1
The &ARGS Directive 13-1
Object Arguments 13-2
Specifying Types 13-3
How Null Strings are Handled 13-3
Argument Defaults 13-5
Option Arguments 13-6
REST and UNCL Data Types 13-8

14 WRITING SUBROUTINES AND FUNCTIONS IN CPL

Introduction 14-1
Writing Routines 14-2
Writing Functions in CPL 14-8

15 ERROR AND CONDITION HANDLTNG IN CPL

Introduction 15-1
Error Handling 15-1
Passing Severity Codes 15-4
Condition Handling 15-6

VI1

APPENDIXES

A SYNTAX SUMMARY A-l

B CPL ERROR MESSAGES

Introduction B-l

Error Messages B-2

C RUNNING CPL PROGRAMS AS BATCH JOBS AND PHANTOMS

Running CPL Programs as Batch Jobs C-1

Job Displays for CPL Jobs C-2

Running CPL Programs as Phantoms C-3

D COMINPUT AND CPL COMPARED

Comparisons D-l

Sample Files D-5
A Final Note D-9

E GLOBAL VARIABLE ROUTINES
Introduction E-l
GV$SET E-l
GV$GET E-2
Data-Type Conversions for
FORTRAN and COBOL E-2

INDEX X-l

Vlll

About
This Book

The CPL User 's Guide provides both a t u t o r i a l and a reference guide for
Prime's Command Procedure Language (CPL).

This book i s divided i n to three p a r t s .

• Part I introduces CPL and teaches the basics of CPL programming.
We advise a l l readers who a re new t o CPL to read through these
chapters in order.

Some readers wi l l find the i r needs s a t i s f i e d by the features
provided by t h i s basic subset of CPL. They wi l l not need t o
read fur ther .

• Part I I presents an intermediate subset of CPL. Mastering t h i s
subset adds considerably to the power of the CPL programs you
can wr i t e , while not introducing any great complexity. Many
users , pa r t i cu la r ly applicat ions programmers, w i l l want t o work
with t h i s subset .

• Part I I I presents the addit ional features which make up fu l l
CPL. In addi t ion, i t contains a fu l l e r explanation of how CPL
evaluates expressions, and a reference sect ion on CPL's command
functions. Although any user might want t o refer t o some par t
of t h i s mater ia l , Part I I I as a whole w i l l probably be of most
use to systems programmers.

We assume tha t the readers of t h i s book a re programmers who a re already
somewhat familiar with Prime's operating system, PRIMDS, and i t s
ed i to r , ED. If you ' re not famil iar with PRIMDS, you should read:

• The Prime User 's Guide, Chapters 1-7

• The New User 's Guide t o EDITOR and RUNOFF, Chapter 3

IX

Some familiarity with structured programming concepts (such as DO loops
and IF...THEN...ELSE constructs) is also helpful. If you haven't done
structured programming before, you may want to refer to one of the many
structured programming texts on the market. Two useful ones are:

• Conway and Gries, An Introduction to Programming: A Structured
Approach, Winthrop, Cambridge, MA, 1973

• Xenakis, Structured PL/I Programming, Duxbury Press, 1979

PRIME DOCUMENTATION CONVENTIONS

The following conventions are used in command formats, statement
formats, and in examples throughout this document. Examples illustrate
the uses of these commands and statements in typical applications.
Terminal input may be entered in either uppercase or lowercase.

Convention Explanation

UPPERCASE In command formats, words
in uppercase indicate the
actual names of commands,
statements, and keywords.
They can be entered
in either uppercase
or lowercase.

Example

SLIST

lowercase In command formats, words
in lowercase indicate items
for which the user must
subs t i tu te a sui table value.

LOGIN user - id

abbreviations

underlining
in

examples

If a command or statement
has an abbreviation, i t i s
indicated by underlining.
In cases where the command
or d i rec t ive i t s e l f
contains an underscore, the
abbreviation i s shown below
the fu l l name, and the
name and abbreviation are
placed within braces.

In examples, user input
i s underlined but system
prompts and output are not.

LOGOUT

&SET_VAR
&S

OK, RESUME MY_PROG
This i s the output
of MY_PROG.CPL
OK,

Large brackets

Large braces

Ellipsis

Parentheses
()

Hyphen

Large brackets enclose
a l i s t of two or more
optional items. Choose
none, one, or more
of these items.

Large braces enclose a
l i s t of items. Choose
one and only one of
these items.

An e l l i p s i s indicates t h a t
the preceding item may be
repeated.

In command or statement
formats, parentheses must
be entered exactly
as shown.

Wherever a hyphen appears
as the f i r s t l e t t e r of
an option, i t i s a
required par t of t ha t
option.

SPOOL -LIST
-CANCEL

CLOSE I f i lename!
(ALL J

i t em-x{, i tem-y}. . .

DIM array (row,col)

SPOOL -LIST

ADDITIONAL OONVENTIONS FOR THIS BOOK

Braces
{ }

Brackets
[1

Braces indicate that the
item enclosed is optional.

Brackets indicate a CPL
function call. They must
be entered literally.

DATE {option}

[EXISTS object]

XI

PARTI

The Basic Subset

1
Introduction

WHAT IS CPL?

CPL i s Prime's Command Procedure Language. I t makes use of such
"high-level language" features as branching and argument t ransfer to
simplify and automate long command sequences and t o provide
decision-making and computational power a t the command l e v e l .

BOW MIGHT YOU USE CPL?

Suppose tha t you frequently compile three FORTRAN 77 programs. The
commands t h a t do t h i s might be:

F77 JEFF -B RICHS>BIN>JEFF.BIN
F77 DICK -B RICHS>BIN>D1CK.BIN
F77 BARRY -B RICHS>BIN>BARRY.BIN

That ' s an annoying amount t o type many times a day. But you can type
i t once, with the Editor, to create a CPL program (named, say,
OOMP.CPL). Then you can run the CPL program with the simple command:

R COMP

to compile all three programs.

1-1 Second Edition

DOC4302-190

NAMING CPL PROGRAMS

CPL programs must have names ending in .CPL (e.g., TEST.CPL, COMP.CPL).
The .CPL suffix identifies the file as a CPL program to the RESUME,
JOB, and PHANTOM commands. However, you do not have to specify the
.CPL suffix when you invoke the program. (You may specify it if you
wish.)

RUNNING CPL PROGRAMS

CPL programs may be run interactively by the RESUME or CPL commands.
They may be run as phantoms by the PHANTOM command, and as Batch jobs
by the JOB command. Thus, our sample program, COMP.CPL, could be run
by the commands:

• RESUME COMP (or R COMP)

• CPL COMP

• PHANTOM COMP (or PH COMP)

• JOB COMP

When given the filename COMP, the CPL, PHANTOM, and JOB commands look
for the f i l e COMP.CPL. Finding i t , they run i t as a CPL program. (The
RESUME command looks f i r s t for a runf i l e (that i s , a compiled and
loaded program) named COMP.SAVE. If i t doesn't find that , i t looks for
a CPL program named COMP.CPL.)

If COMP.CPL didn't exist , the four commands would then look for plain
COMP. If COMP existed, the CPL command would run i t as a CPL program.
RESUME would run i t as a runf i l e . PHANTOM and JOB would run i t as a
command input file.

Note

If a CPL program is used by many people, the System
Administrator may put it into the system commands directory,
CMDNCO. Then it is invoked by typing its name alone. For
example:

COMP

Second Edition 1-2

INTRODUCTION

VARIABLES, FUNCTIONS, AND DIRECTIVES IN CPL PROGRAMS

The convenience gained by creat ing programs composed exclusively of
PRIMOS commands i s j u s t the beginning of what CPL of fe rs . CPL i s
modelled on high-level algorithmic languages (such as PL/I and PASCAL).
Thus, i t a l so offers you the convenience of:

• Variables

• Function c a l l s

• Flow-of-control d i rec t ives (such as &IF...&THEN...&ELSE, &GOTO,
&SELECT)

• Error handling

Variable references in CPL are identified by being set within percent
signs (e.g., %VAR%). Function calls are enclosed in brackets (e.g.,
[NULL A]). Control directives are preceded by ampersands (e.g., &IF,
&GOT0). Through these simple means, you can v/rite CPL programs of
great power and flexibility.

HOW DOES CPL WORK?

CPL has two parts: the language and the interpreter. The CPL language
allows users to write CPL programs which contain either a sequence of
PRIMOS commands or a combination of PRIMOS commands and CPL directives.
The commands give instructions to PRIMOS, or to one of its subsystems.
The directives give instructions to the CPL interpreter itself.
(PRIMOS never sees these directives; it sees only the commands which
the interpreter passes to it.)

When the programs are executed, the CPL intepreter first evaluates
variables and function calls and replaces them with their correct
values. It then interprets and acts upon CPL directives. Finally, it
passes the resulting commands to PRIMOS for execution. Thus, a lengthy
series of commands can be set in motion by a single command, relieving
the user of much repetitive typing; yet run-time decisions can be made
at any time during the file's execution.

Let's take a closer look at how the interpreter accomplishes this.

1-3 Second Edition

DOC4302-190

The CPL Interpreter

When a CPL file is run, each line in turn is handed to the CPL
interpreter. If the line consists of a PRINDS command (for example,
F77 JEFF), the interpreter hands it to the PRIMOS command processor for
execution. This is diagrammed in Figure 1-1.

CPL File contains:

CPL interpreter passes commands on.

Standard command processor sees:

Command Execution via CPL
Figure 1-1

Variables: If the command contains either variables or function calls,
the interpreter evaluates the references, and substitutes the correct
values before passing the command to PRIMOS. For example, if JEFF is
the current value of a variable called FILENAME, the actions shown in
Figure 1-2 are taken. The interpreter, seeing the percent signs
surrounding FILENAME, recognizes that they signal a variable reference.
It therefore removes the characters %FILENAME% from the command line
and replaces them with the characters JEFF. Then it hands the modified
command to the command interpreter for execution.

Second Edition 1-4

INTRODUCTION

CPL file contains: F77 %FILENAME%

CPL interpreter substitutes
variable value for variable
reference:

Command processor sees:

#F77«H mm fiili
v

F77 JEFF

Execution of Command Containing a Variable
Figure 1-2

Function Calls: Function calls are treated similarly to variables.
That is, if the CPL interpreter finds a function call in a command
line, it evaluates that function call and substitutes the character
string returned by the function call for the call itself in the command
line.

If both variables and function calls are present in a command line, the
variables are evaluated first and the function calls next. This allows
the use of variables within function calls.

Figure 1-3 shows an example of a function call in a command. A CPL
program wishes to spool a report it has created. The report is
labelled, via a call on the CPL function DATE, with the date of its
creation.

The DATE function has several formats. The one shown in this example,
DATE -TAG, provides year, month, and day: an ordering which
alphabetizes accurately and is thus excellent for "tagging" reports,
data files, or listing files.

1-5 Second Edition

DOC4302-190

When the CPL in te rpre te r sees the square brackets t ha t mark the
function c a l l , i t evaluates the function. In t h i s exairtple, i t locates
the current date in the correct format. i t then subs t i tu t e s the
character s t r ing representing t h i s date, 800623 (tha t i s June 23,
1980), for the character s t r ing [DATE -TAG]. This completes the
i n t e r p r e t e r ' s work on t h i s sample command, so i t now passes the command
t o PRIMOS for execution.

CPL file contains:

CPL interpreter evaluates
function call, substitutes

value of function for
function call in command

line:

Command processor sees: SPOOL REPORT.800623

Execution of Command Containing a Function Call
Figure 1-3

Directives: If the line begins with an ampersand (&), the interpreter
recognizes it as a CPL directive. For example:

&IF %A% > %B% &THEN F77 %FILENAME%

In this example, the interpreter replaces the variable references %A%,
%B%, and %FILENAME%, with their current values (say, 3, 1, and JEFF).
It tests to see if 3 is greater than 1. Since 3 is greater, it
executes the &THEN directive, passing the command F77 JEFF to the
command processor for execution. This sequence of actions is
diagrammed in Figure 1-4.

Second Edition 1-6

INTRODUCTION

&IF %A% > %B% &THEN F77 %FILENAME%
1. CPL file contains

the statement:

2. The CPL interpreter
reads the statement,
substituting current
values for variable
references:

3. The CPL interpreter
tests:

Since the test condition
is true, CPL executes
the &THEN statement,
passing the command
"F77 JEFF" to the
Standard Command Processor:

Command processor executes
the command:

F77JEFF

Execution of a Sample CPL Directive
Figure 1-4

1-7 Second Edition

DOC4302-190

CPL FEATURES

The above examples demonstrate only two of the time-saving features
offered by CPL. But they also show how simple CPL programs can be.
CPL has features designed t o appeal t o everyone, from the appl ica t ions
programmer who wants a language t h a t ' s :

• Simple

• Easy to remember

• Unambiguous

to the system programmer who wants:

• Maximum control

• Flexibility

• The power t o wr i t e h i s own commands and command functions

WHO WANTS WHICH FEATURES?

To help users find the features of CPL t h a t w i l l be most, useful t o
them, we have divided t h i s book in to three p a r t s , each presenting one
"subset" of CPL, as follows:

Part I ; The Basic Subset

This i s the subset everyone needs t o know. I t contains the following
features:

• Arguments Allow user t o supply values for CPL
variables when the CPL f i l e i s
invoked.

• Flow-of-control d i rec t ives Allow CPL in te rp re te r t o make t e s t s
(e .g . , &IF) and take conditional
action, (e .g . , &THEN &GOTO LABEL) a t
run time.

• &DATA groups Allow CPL programs t o pass data to
user programs and subsystems (e .g . ,
ED, SORT, SEG), and t o accept input
from the u s e r ' s terminal .

Second Edition 1-8

INTRODUCTION

Part I a l so explains and demonstrates CPL's format and CPL's default
error handling. Sample programs demonstrate CPL programs t h a t :

• Compile programs

• Compile, load and execute programs

• Set your own editor symbols at the start of each edit session

Part II: The Intermediate Subset

This subset contains extensions allowing considerably more flexibility
and control while still being easy to use. It offers:

Arguments with default values
and type checking

"Rest" type arguments

Further flow-of-control
directives

Local variables

Global variables

Terminal output functions
and commands

Useful in CPL programs meant
for use by several people.

Useful for specifying command
options as arguments.

Include loops and
(&SELECT) statements.

case

Allow var iables t o be defined
within CPL programs, values t o
be computed a t runtime.

Allow variables t o be defined
a t command l e v e l , within CPL
programs, or within user
programs; var iables l a s t un t i l
the user de le tes them.

Allow CPL programs t o p r i n t
messages a t the terminal or in
output f i l e s .

Terminal input functions Allow CPL programs t o request
and use information from user
a t terminal .

Simple error handling Allows users t o override CPL's
error-handling de fau l t s .

• Debugging Allows easy debugging of CPL
programs.

1-9 Second Edition

DOC4302-190

Wildcards and their use Allow easy specification of
groups of f i les and
directories.

Part I I I ; Ful l CPL

Part III is addressed to the programmer who wants the full power and
flexibility offered by CPL. Features at this level include:

Option arguments

The "unclaimed"
argument type

Full error handling

Full condition handling

Abbreviation expansion

CPL command functions

User-written command
functions

Allow the creation of PRIMDS-like
commands with position-independent
arguments.

Allows the use of a variable number
of arguments, with some position
independence.

Allows users to write their own
error-handling routines.

Provides an interface to PRIMDS's
condition mechanism.

Allows CPL programs to use PRIf-E's
ABBREV preprocessor.

Provide built-in CPL functions for
arithmetic, Boolean, string-handling,
and file-handling.

Allow users to define their own
functions to supplement those provided
by CPL.

Further Information

Further information on CPL is provided in appendixes.

• Appendix A summarizes the syntax of CPL.

• Appendix B lists CPL's error messages.

• Appendix C shows how to run CPL programs as Batch jobs or
phantoms at Rev 18.1.

• Appendix D tells how to convert existing command input files to
CPL programs.

• Appendix E contains two routines by which user programs can
define and reference global variables.

Second Edition 1-10

2
The Basics of GPL

PRIMPS COMMANDS IN CPL PROGRAMS

The simplest CPL programs are those composed entirely of PRIMOS
commands: for example, a CPL file that opens a comoutput file and then
compiles three FORTRAN 77 programs. Such a file might be named
COMPILE.CPL . It might look like this:

COMO COMPILE.COMO
DATE
P77 THISFILE -XREF
F77 THATFILE -XREF -321
F77 TOTHERFILE -DEBUG
COMO -E

Note

The format of CPL programs is quite simple, being based on the
principle of "one statement per line." Each example in this
chapter demonstrates correct format. Formatting rules are
discussed in Chapter 3.

COMPILE.CPL is run by the command "R COMPILE", "R COMPILE.CPL", or "CPL
COMPILE". (Since PRIMOS automatically searches for files with a .CPL
suffix whenever the RESUME command is given, you do not have to type
the suffix explicitly.

2-1 Second Edition

DOC4302-190

Note

If the System Administrator had placed COMPILE.CPL in the
system command UFD, CMDNCO, i t would be invoked by i t s name
alone (e .g . , "COMPILE") and would behave in a l l respects l i k e a
PRIMOS external command. Similarly, if users define
abbreviations for the i r "Resume CPLfile" commands, they can run
those commands by simply typing the abbreviat ions. (See the
Prime User 's Guide or trie PRIMPS Commands Reference Guide for
an explanation of ABBREV.)

Since CPL programs can serve many useful purposes, some of them
may well be ins t a l l ed in CMDNCO. Many more w i l l be invoked by
user defined abbreviations. However, since these invocations
vary from user t o user, a l l examples in t h i s guide w i l l use the
RESUME command.

Terminal Displays With CPL

The commands contained in CPL programs are not normally pr inted out .
Thus, if you ran COMPILE. CPL, t h i s i s what you would see a t your
terminal:

OK, r compile
24 Dec 81 11:41:52 Thursday

[FORTRAN 77 19.0]
0000 ERRORS [<.MAIN.> F77-REV 19.0]

[FORTRAN 77 19.0]
0000 ERRORS [<.MAIN.> F77-REV 19.0]

[FORTRAN 77 19.0]

0000 ERRORS [<.MAIN.> F77-REV 19.0]

The COMOUTPUT f i l e would contain the following statements:

24 Dec 81 11:42:38 Thursday
[FORTRAN 77 19.0]
0000 ERRORS [<.MAIN.> F77-REV 19.0]

[FORTRAN 77 19.0]
0000 ERRORS [<.MAIN.> F77-REV 19.0]

[FORTRAN 77 19.0]
0000 ERRORS [<.MAIN.> F77-REV 19.0]

If you want the commands t o be printed, you can preface the CPL f i l e
with the "&DEBUG &ECHO COM" d i rec t ive . This d i rec t ive t e l l s the CPL
in te rpre te r t o p r i n t a l l commands a t the terminal and in to output
f i l e s .

Second Edition 2-2

THE BASICS OF CPL

Note

The &DEBUG directive which controls all of CPL debugging
facilities, is discussed in full in Chapter 10.

If the &DEBUG &ECHO directive were included, the COMPILE.CPL file would
look like this:

&DEBUG &ECH0 COM
COMO COMPILE.COMO
DATE
F77 THISFILE -XREF
F77 THATFILE -XREF -321
F77 TOTHERFILE -DEBUG
COMO -E

When t h i s v e r s i o n of COMPILE.CPL i s run , t h e t e rmina l s e s s i o n looks
l i k e t h i s :

OK, r compile
DATE
24 Dec 81 11:45:44 Thursday
F77 THISFILE -XREF

[FORTRAN 77 19.0]
0000 ERRORS [<.MAIN.> F77-REV 19.0]
F77 THATFILE -XREF -321

[FORTRAN 77 19.0]
0000 ERRORS [<.MMK.> F77-REV 19.0]
F77 TOTHERFILE -DEBUG

[FORTRAN 77 19.0]
0000 ERRORS [<.MAIN.> F77-REV 19.0]

COMO -E

The COMOUTPUT file contains this:

DATE
24 Dec 81 11 :48:21 Thursday
F77 THISFILE -XREF
[FORTRAN 77 19.0]
0000 ERRORS [<.MAIN.> F77-REV 19.0]
F77 THATFILE -XREF -321

[FORTRAN 77 19 .0]
0000 ERRORS [<.MAIN.> F77-REV 19.0]
F77 TOTHERFILE -DEBUG

[FORTRAN 77 19.0]
0000 ERRORS [<.MAIN.> F77-REV 19.0]
CXM) -E

2-3 Second E d i t i o n

DOC4302-190

Which PRIMPS Ccffinands Can You Use ?

CPL programs t h a t c o n s i s t e n t i r e l y of PRIMDS commands can use the
fo l lowing commands:

• Al l compiler commands: COBCL, F77, FTN, PL1G, PMA, PPG, e t c .

• Al l commands which execute programs. For example:

SEG THISFILE.SEG
R TKATFILE.SAVE
R FILE.CPL
BASICV ANYFILE

• Any user commands which do no t invoke a subsystem or i n i t i a t e a
d i a l o g . For example, you may u se :

ATTACH
LISTF
CREATE
DELETE
CNAME
SET_ACCESS
SET_DELETE
SIZE

• Commands t h a t invoke i n t e r a c t i v e subsystems or u s e r programs, i f
t h e use r i s going t o supply the da t a or subcommands from the
t e rmina l a t runt ime. For example:

ED
SEG
MAGNET
SORT

If you want t h e CPL program i t s e l f t o supply t h e d a t a or
subcommands, you must use CPL's &DATA d i r e c t i v e , exp la ined l a t e r
i n t h i s c h a p t e r .

What Commands C a n ' t You Use?

Do no t use t h e commands:

• COMINPUT (in any form)
• CLOSE ALL
• DELSEG ALL

in a CPL file. Any of these commands will abort execution of the file.

If you have existing COMINPUT files, you can easily convert them to CPL
programs. For instructions on how to do so, see Appendix D.

Second Edition 2-4

THE BASICS OF CEL

USING VARIABLES IN CPL PROGRAMS

Although CPL programs composed en t i re ly of PRIMDS commands can be
extremely useful , most users want the f l e x i b i l i t y t ha t comes from using
var iable data in t h e i r commands. Variables a re eas i ly es tabl ished in
CPL. In t h e i r simplest form, they are establ ished with the &ARGS
d i r ec t i ve . For example, a CPL f i l e (named F7.CPL) t h a t compiles any
F77 source f i l e might be:

&ARGS FILENAME
COMO %FILENAME%.COMO
DATE
F77 %FILENAME% -DEBUG
COMO -E

In this example, the &ARGS directive defines one variable, FILENAME.
When the file is invoked, the name of the file to be compiled is
supplied as an argument, following the name of the CPL file. For
example:

R F7 JEFF

The &ARGS directive takes the character string JEFF and assigns it to
the variable FILENAME. JEFF is now the value of FILENAME.

From now on, each time a variable reference, %FILENAME%, is found, the
CPL interpreter substitutes the character string JEFF for the character
string %FILENAME%. Thus, the command,

COMO %FILENAME%.COMO

becomes,

COMO JEFF.COMO

while the command,

F77 %FILENAME% -DEBUG

becomes,

F77 JEFF -DEBUG

Note that the variable, FILENAME, is not enclosed in percent signs when
it is being defined in the &ARGS directive, but is enclosed in percent
signs whenever it is "referenced"—that is, whenever its value, rather
than its name, is wanted.

2-5 Second Edition

DOC4302-190

Note

When a var iable reference i s juxtaposed t o another character
s t r ing , with no blanks between them (as in %FILENAME%.COMO),
the value of the variable i s concatenated with the other
s t r ing , (as in JEFF.CQMO). TWO or more var iable references may
also be juxtaposed, (as in %FILENAME%%FILENAME%). Again, a
s ingle s t r ing re su l t s (JEFFJEFF).

Multiple Arguments

CPL programs can contain mult iple arguments. When mult iple arguments
are given, the var iab le names in the &ARGS d i rec t ive must be separated
by semicolons. For example:

&ARGS FILENAME; COMPILER

Now you can wr i te a more general CPL f i l e , cal led COMPILE_ALL.CPL, t h a t
can compile FIN, F77, or PL1G source f i l e s . I t reads:

&ARGS FILENAME; COMPILER
COMO %FILENAME%.COMO
DATE
%COMPILER% %FILENAME% -64V -DEBUG
COMO -E

Invoking t h i s f i l e by typing,

R COMPILE_ALL JEFF FIN

creates the command,

FIN JEFF -64V -DEBUG

In general, arguments are defined by the i r pos i t ion in the command
l i n e . In the above example, the f i r s t argument, "JEFF", became the
value of the f i r s t var iable in the &ARGS l i n e , "FILENAME". The second
argument, "FIN", was assigned to the second var iab le , "COMPILER".
Giving the arguments in reverse order:

R COMPILE_ALL FIN JEFF

would assign "FIN" to "FILENAME" and "JEFF" to "COMPILER".

Omitted Arguments

If an argument i s omitted from the command l i n e , the CPL in te rpre te r
se t s i t s value to the exp l ic i t nul l s t r ing , ' ' . The PRIM3S command
processor then removes the nul l s t r ing before executing the command.

Second Edition 2-6

THE BASICS OF CPL

In the above example, the command:

R COMPILE_ALL TESTFILE

assigns the value TESTFILE to the variable FILENAME, and assigns the
null string to the variable COMPILER. The resulting PRIMOS command
first becomes:

ii TESTFILE -64V -DEBUG

and then becomes:

TESTFILE -64V -DEBUG

Since TESTFILE is not a legal command, PRIMOS returns you to command
level with an error message.

CPL offers several ways to deal with null arguments. Some simple ones
are explained later in this chapter, in Chapter 5, and in Chapter 13.
CPL's &ARGS directive can also be expanded to:

• Check the type of each supplied argument for accuracy

• Supply default values for omitted arguments

• Make arguments position-independent

The first two of these facilities are explained in Chapter 6. The
third is explained in Chapter 13.

DECISION-MAKING IN CPL PROGRAMS

When a CPL file contains only PRIMOS commands (or PRIMOS commands plus
variables and the &ARGS directive), it is executed sequentially; that
is, each command (each line of the file) is executed in turn.

Sometimes, however, you may want to alter the sequence in which the
commands are executed. To alter the "flow of control" in this way, you
use CPL's flow of control directives. The simplest and most important
of these is the &IF directive.

The &IF Directive

The form of the &IF directive is:

&IF test &THEN statement

Test is a logical test which can be answered TRUE or FALSE (for
example, &IF A = B, &IF %NUMBER% < 10). Statement is either a command
or a CPL directive.

2-7 Second Edition

DOC4302-190

Test may test variables, constants, functions or expressions against
each other. For example:

• &IF %A% = 10 (variable and constant)
• &IF %A% > %B% (two variables)
• &IF %A% < %B% + %C% (variable and expression)
• &IF %A% + %B% = %D% + 30 (two expressions)
• &IF [LENGTH %A%] < 100 (function and constant)

The arithmetic and logical operators that can be used are shown in
Table 2-1. They are explained in detail in the discussion of the CALC
function in Chapter 12. Note that operators must be separated by at
least one space from their operands.

Test may also test the truth or falsity of logical functions (for
example, &IF [NULL %A%]). This feature is explained later in this
chapter.

How the &IF Directive Works: When the CPL interpreter reads an &IF
directive, itf substitutes current values for any variable references,
expressions, or function calls it finds. Then it tests to see if test
is true or false. If test is true, the interpreter executes the
command or directive that forms the &THEN statement.

An Example: Suppose you compile a program frequently, but only
occasionally want to spool the listing file. You could use an argument
and the &IF directive to tell the CPL program whether or not to spool
the listing file. Here's a program to do it (called CNS.CPL):

Note

As t h i s program shows, you can use / * t o p l ace comments i n CPL
programs. For f u l l r u l e s governing comments, s e e Chapter 3 .

&DEBUG &ECHO COM
/*This program compiles and optionally spools
/*an F77 program.
/*Give the argument "SP" to spool the l i s t i n g f i l e .

&ARGS FILENAME; SP
/*Open the COMOUTPUT f i l e and compile the program

COMO %FILENAME%.COMO
DATE
F77 %FILENAME% -L %FILENAME%. LIST -XREF

/* I f desired, spool i t .
&IF %SP% = SP &THEN SPOOL %FILENAME%.LIST -AT MS3
COMO -E

Second Edition 2-8

THE BASICS OF CPL

Table 2-1
CPL Operators

Operator

Arithmetic Operators

+

*

/

Logical Operators

&

1

Relational Operators

<
>
<=
>=

Meaning

addition, unary plus
subtraction, unary minus
multiplication
integer division (result is truncated to
integer, fractional remainder is dropped)

and
or
not

equal
less than
greater than
less than or equal
greater than or equal
not equal

2-9 Second Edition

DOC4302-190

If you give the command

R CNS JEFF SP

then the test, SP = SP, is true, and the listing file, JEFF.LIST, is
spooled. If you give the command

R CNS JEFF

the test is false (the null string does not equal "SP"). In this case,
the listing file is not spooled. Instead, the CPL interpreter ignores
the &THEN statement, and passes on to the next line in the program (in
this case, "CQMO -E"). Figure 2-1 shows the flow chart for these
statements.

The &ELSE Directive

The &IF directive may be used by itself, as in the example above; or
it may be followed by the &ELSE directive. When used by itself, &IF
tells the interpreter either to execute or to ignore some statement.
(In the example, spool the file, or don't spool it.) When the &IF and
&ELSE directives are used together, they tell the interpreter to choose
between two courses of action.

The form of the paired directives is:

&IF test &THEN statement-1
&ELSE statement-2

If t e s t i s TRUE, statement-1 i s executed. If t e s t i s f a l se ,
statement-2 i s executed. For example, suppose you compile many FTN
programs and a few F77 programs. You might want a program (called
COMPILE2.CPL) t h a t looked l i ke t h i s :

&ARGS FILENAME; COMPILER
&IF %COMPILER% = F77 &THEN F77 %FILENAME% -DEBUG -321
&ELSE FTN %FILENAME% -64V

If you give the command "R COMPILE2 THISFILE F77", the test (F77 = F77)
becomes true, and THISFILE is compiled by the F77 compiler. If you
give any other value for the "compiler" argument—or if you omit that
argument altogether—THISFILE is compiled by the FTN compiler. Figure
2-2 shows the flow chart for these statements.

Nested &IFs

&IF directives may be nested: that is, either the &THEN or the &ELSE
action of one &IF directive may be another &IF directive. Nested &IF
statements are discussed in Chapter 8.

Second Edition 2-10

THE BASICS OF CPL

(

FROM PREVIOUS
COMMAND

SPOOL FILE

)

CLOSE
COMMAND OUTPUT
FILE

c TO NEXT
COMMAND }

Sample &IF Statement
Figure 2-1

o _ 11 Second Edition

DOC4302-190

(

FROM PREVIOUS
COMMAND

)

YES

COMPILE %FILENAME%
USING F77
COMPILER

>v r~

COMPILE %FILENAME%
USING FTN
COMPILER

)

f TO NEXT ^
V COMMAND J

Sample &IF... &THEN... &ELSE Statement
Figure 2-2

Second Edition 2-12

1HE BASICS OF CPL

Using Functions in &IF Statements

Like other high-level languages, CPL provides b u i l t - i n functions t o
simplify frequently made t e s t s and computations. Functions appear in
CPL programs in the form of function c a l l s ; t h a t i s , functions and
the i r arguments enclosed in square brackets (i . e . , [FUNCTION a r g]) .
When a function c a l l appears in a command or d i r e c t i v e , the CPL
in te rpre te r performs the required t e s t or computation, and subs t i tu t e s
the character s t r i n g thus produced for the character s t r i n g represented
by the function c a l l .

The NULL Function; One of the most useful CPL functions i s the NULL
function. I t s form i s

[NULL var]

where var is any CPL variable.

The NULL function tests for a null character string, returning the
character string TRUE if it finds one and the character string FALSE if
it does not. Since the value of an omitted argument is the null
string, the NULL function can be used in &IF directives to test for an
omitted argument.

An Example: A test for a null argument might be used to set the home
UFD for some procedure. For example, a CPL file might begin

&ARGS WHERE
IF [NULL %WHERE%] &THEN ATTACH MYJJFD

&ELSE ATTACH %WHERE%

Specifying WHERE allows you to make any desired ATTACH; omitting WHERE
attaches you to your default choice (MYJJFD).

Note

Remember that the &ARGS directive assigns values in positional
order; that is, the first argument given is assigned to the
first variable specified, and so on. Therefore, if you omit
any one argument from a list of two or more, the last variable
in the &ARGS directive is the one that gets set to the null
string. If you omit two arguments, the last two variables are
set to the null string, and so on. Therefore, when you use the
NULL function to test for omitted arguments, always test first
for the last argument in line. If it is not null, none of the
others can have been omitted accidentally.

2-13 Second Edition

DOC4302-190

The EXISTS Function

The EXISTS function i s a Boolean function tha t determines:

• Whether or not a f i l e system object ex i s t s

• Whether i t matches a specified type (f i l e , d i rec tory , or segment
directory)

The form of the function c a l l i s :

[EXISTS pathname {type}]

pathname i s the name or pathname of a f i l e or d i rec tory .

type i s one of the following:

-ANY
-ACCESS_CATEGORY or -ACAT

19.0 -DIR or -DIRECTORY
-FILE
-SEGDIR or -SEGMENT_DIRECTORY

If type i s present , then the EXISTS function re turns the value TRUE if
pathname does ex is t and i s of the r ight type. I t re turns the value
FALSE if pathname does not ex is t or i f i t i s of the wrong type. For
example, assume a UFD tha t contains three f i l e s : PAYROLL.COBOL,
OOMPILE_ALL.CPL, and PHONEJLIST. Assume t h a t i t a l so contains two
sub-UFD's, WORKFILES and MEMOS. If you were attached t o t h i s UFD, the
function c a l l

[EXISTS PHONE_LEST -FILE]

would return

TRUE

because PHONE_LIST i s a f i l e in the current d i rec tory . The function
c a l l

[EXISTS MEMOS -SEGDIR]

would return the value

FALSE

because MEMOS i s not a segment di rectory.

If type i s not present , the EXISTS function merely reports on the
existence or non-existence of pathname.

Second Edition 2-14

THE BASICS OF CPL

Continuing with examples from our imaginary directory,

[EXISTS MEMOS]

returns TRUE, while

[EXISTS PAYROLL. FTN]

returns FALSE.

Examples: The first example checks to see if a "new" file has been
written. If it has, it calls ED to allow its user to edit the new
file. If the new file does not exist, the program requests the older
version:

&IF [EXISTS MEMO.NEW] &THEN ED MEMO.NEW
&ELSE ED MEMO

The second example uses the "NOT" symbol, A, to reverse the value
returned by EXISTS. This program wants to attach to a specific
directory. If the directory doesn't exist, it will create it before
doing the ATTACH:

&IF * [EXISTS SUBDIR] &THEN CREATE SUBDIR
ATTACH *>SUBDIR

OTHER CONDITIONAL ACTIONS

In the examples above, the &THEN and &ELSE directives execute single
commands. These directives may also execute groups of commands, by
using the &D0 and &END directives to mark the beginning and end of the
command groups. (&THEN and &ELSE directives may also execute GOTO's,
as discussed later in this chapter.)

DO Groups

The format for &DO groups is as follows:

&D0

statement 1
statement 2

statement n
SEND

2-15 Second Edition

DOC4302-190

Normally, each s t a t emen t i n a CPL program r e p r e s e n t s one a c t i o n t h e
i n t e r p r e t e r i s asked t o perform. In a &DO group, however, a l l t h e
s t a t emen t s between t h e &DO and t h e &END r e p r e s e n t a s i n g l e a c t i o n t o
t h e i n t e r p r e t e r . Thus, i n s t e a d of saying

&IF t e s t &THEN s t a t emen t -1
&ELSE s t a t emen t -2

we can say

&IF t e s t &THEN &DO
f i r s t -grour>-of-s ta tements
SEND

&ELSE &DO
second-group-of-s ta tements
&END

For example, you can use &DO groups t o modify an e a r l i e r sample
program, COMPILE2.CPL, so t h a t i t compiles t h r e e modules i n s t e a d of
one:

&DEBUG &ECHO COM
&ARGS FILENAME; COMPILER
&IF [NULL %COMPILER%] &THEN &DO

COBOL %FILENAME%1
COBOL %FILENME%2
COBOL %FILENAME%3
&END

&ELSE &DO
%COMPILER% %FILENAME%1 -64V
%COMPILER% %FILENAME%2 -64V
%C0MPILER% %FILENAME%3 -64V
&END

Terminal s e s s i o n s us ing t h i s program might look l i k e t h i s :

OK, R COB_ALL MODULE
COBOL M3DULE1

Phase I
Phase I I
Phase I I I
Phase IV
Phase V
Phase VI

No E r r o r s , No Warnings, Prime V-Mode COBOL, Rev 17.2 <MODULE>

Second Edition 2-16

THE BASICS OF CPL

COBCL M0DULE2
Phase I
Phase I I
Phase I I I
Phase IV
Phase V
Phase VI

No Errors, No Warnings, Prime V-Mode COBCL, Rev 17.2 <MODULE>

COBOL M0DULE3
Phase I
Phase I I
Phase I I I
Phase IV
Phase V
Phase VI

No Errors , No Warnings, Prime V-Mode COBOL, Rev 17.2 <M0DULE>

OK,

Two further things should be noted in t h i s example:

• The argument MODULE i s transformed in to the filenames M0DULE1,
MDDULE2, and M0DULE3. This i s made poss ib le by CPL's method of
s t r ing subs t i tu t ion . Since %FILENAME%1 appears as a s ingle word
(that i s , i t contains no blanks) , the s t r i ng produced by
subs t i tu t ing "MODULE" for "%FILENAME% " i s a l so a s ingle word.

• The statements ins ide the &D0 group a re indented. This i s done
for ease of reading. CPL allows indentat ion wherever you wish
i t . I t never demands i t .

SGOTOs

CPL lends i t s e l f so well t o s t ructured programming t h a t you may never
need the &GOT0 d i r e c t i v e . However, if you do need or want i t , h e r e ' s
how to do i t :

1 . Use the &LABEL d i rec t ive to es tabl ish a l abe l ; for example,
&LABEL HERE. The &LABEL di rec t ive must be on a l i n e by i t s e l f ,
immediately preceding the statement or statements t o be
executed.

2 . Use the &GOT0 d i rec t ive to t ransfer control t o the statement
following the &LABEL d i rec t ive . Example: &GOTO HERE.

2-17 Second Edition

DOC4302-190

The form i s :

&GOTO label-name

&LABEL label-name

Once control has passed to the label led statement, i t continues
sequentially un t i l redirected by some other flow-of-control d i rec t ive
or hal ted by the end of the program. Here i s an example of &GOTOs used
with the &IF d i r ec t i ve :

&ARGS FILENAME; COMPILER
OOMO COMPILE.COMO
DATE

/ * T e s t for n u l l compiler
&IF [NULL %COMPILER%] &THEN &GOTO DFLT

&ELSE &GOTO ANY
/*

&LABEL DFLT / * F i r s t a l t e r n a t i v e
FTN %FILENAME% -L %FILENAME%.LIST -64V
&GOTO WRAPUP

/ *
&LABEL ANY /*Second a l t e r n a t i v e

%COMPILER% %FILENAME% -L %FILENAME%.LIST -64V
/ *
/*Both a l t e rna t ives f inish off the same way

&LABEL WRAPUP
SPOOL %FILENAME%.LIST
COMO -E

USING CPL WITH SUBSYSTEMS: &DATA GROUPS

Many of Prime's u t i l i t i e s , such as ED (the t ex t editor) and SEG (the
V-mode and I-mode loader) , require subcommands t o accomplish t h e i r
function. Similarly, many user programs require t ha t data be typed in
from the terminal . CPL's &DATA di rec t ive allows CPL programs t o supply
the data or subcommands needed by these programs and u t i l i t i e s .

&DATA groups resemble &DO groups in t ha t both are groups of statements
se t off by an opening d i rec t ive (&DO, &DATA), and a closing &END. In
each case, the statements within the group a re t r ea ted as a un i t .

Second Edition 2-18

THE BASICS OF CPL

The form of the &DATA group i s :

&DATA command
Statement-1
Statement-2

Statement-n
&END

Command i s the command tha t invokes the subsystem or u t i l i t y ; for
example: "&DATA ED filename".

Statement 1 through statement-n represent the commands or data to be
passed t o the subsystem or user program.. As with a l l CPL statements,
they may include va r i ab les , function c a l l s , and d i r ec t i ve s .

The &END statement, on a l i n e by i t s e l f , ends the &DATA group.

Here i s an example of a CPL program tha t compiles, loads, and executes
a PL/I-G program:

/*CPL program to compile, load, and execute a PL1G program
/*usage: R CLR FILENAME
/ *
&ARGS FILENAME
PL1G %FILENAME% -DEBUG - B %FILENAME%.BIN / * C o m p i l e p r o g r a m
/ *
&DATA SEG /*Invoke SEG
VLOAD %FILENAME%.SEG /*Provide SEG commands
LOAD %FILENAME%.BIN /*via &data directives
LI PLIGLB
LI
SA
QU

SEND /*end of Sdata group
SEG %FILENAME%.SEG /*execute run- f i l e

Terminal Input in &DATA Groups

Sometimes you may want a CPL f i l e to invoke a subsystem or user
program, give a few subcommands from within the CPL f i l e , and then
allow you t o give further commands from your terminal . You do t h i s by
including CPL's &TTY d i rec t ive inside the &DATA group.

I t doesn ' t matter where inside the group the &TTY d i rec t ive i s . 19.0
However, when the &DATA group i s executed, the &TTY d i rec t ive i s always
executed l a s t , a f te r a l l other statements within the group. For t h i s
reason, we suggest t h a t you place the &TTY d i rec t ive a t the end of the
&DATA group, j u s t before the &END statement.

2-19 Second Edition

DOC4302-190

| This placement is shown in the following format:

19.0

&DATA
statement-1

statement-n
&TTY
&END

When execution reaches the SOTY directive, control returns to the user
at the terminal. When the user leaves the subsystem, control returns
to the CPL f i le . Leaving a subsystem happens in a variety of ways;
for example:

• The user types QUIT in SEG or CONCAT.

• The user types QUIT, FILE, or FILE filename in the Editor.

• RUNOFF or SORT finish their work and return control to command
level automatically.

Conditional Use of the &TTY Directive: You can use the &TTY directive
as part of an &IF. ..&THEN or &IF.. .fiTHEN.. .&ELSE directive. For
example, you could say:

&IF something &IHEN &TTY
&ELSE another_statement

In th is example, the &TTY directive executes only if "something" i s
true. If "something" i s false, then "another_statement" i s executed.

| A Sample Program Using the &TTY Directive

One use of the &TTY directive might be to "customize" the Editor for
your own use by writing a CPL f i le that

1. Invokes the Editor;

2. Issues a set of commands that set Editor modes and symbols as
you want them;

3. Gives you control at the terminal;

4. "Returns" when the edit session is finished, thus returning you
to PRIMOS command level.

Such a file (called EDD.CPL) is shown below.

Second Edition 2-20

THE BASICS OF CPL

Note

This program uses CPL's &SET_VAR d i rec t ive followed fcy a
carr iage re turn t o define a va r iab le , EMPTYLINE, and s e t i t s
value to the t rue nu l l s t r i n g . This nul l s t r i n g i s then passed
t o the ed i to r , i f necessary to force i t from input t o ed i t mode
and back again. The &SET_VAR d i rec t ive i s discussed ful ly in
Chapter 4 .

/ * Usage: R EDD {filename}
/ * Use filename t o ed i t exis t ing f i l e
/ * EDD s e t s ed i t symbols a t terminal,
/ * then re turns you t o in te rac t ive mode
/ * ins ide the ed i to r .
/ * Leave the edi tor by typing Quit, F i l e ,
/ * or F i l e filename, as usual .
/ * EDD w i l l then re turn you t o PRIMOS command l e v e l .
&ARGS FILENAME

/ * Create var iab le EMPTYLINE to hold a nul l s t r i n g
&SET_VAR EMPTYLINE :=

/ * Enter edi tor
&DATA ED %filename%
&IF [NULL %filename%] &THEN %emptyline% / * Go i n t o ed i t mode

SYMBOL SEMICO }
MODE COLUMN

&IF [NULL %filename%] &THEN %emptyline% /*Back t o input mode
&TTY / * Give user control of editor
&END / * End &DATA group
&RETURN

Sane terminal sessions using t h i s program might look l i k e t h i s :

OK, r edd
INPUT

EDIT
SYMBOL SEMICO }
MODE COLUMN

INPUT
1 2 3 4 5 6 7

1234567890123456789012345678901234567890123456789012345678901234567890123456789
This i s a sample f i l e
This i s t h e second l i n e of t h e f i l e

EDIT
f i l e sample
OK,

2-21 Second Edition

DOC4302-190

OK, r edd sample
EDIT

SYMBOL SEMICO }
MODE COLUMN

p23
.NULL.
This i s a sample f i l e
This i s t h e second l i n e of t he f i l e
BOTTOM
n - 1
This i s t h e second l i n e of t he f i l e
c / s e c o n d / l a s t /
This i s t h e l a s t l i n e of t h e f i l e
f i l e
SAMPLE
OK,

Another Example

Another example shows how the &TTY directive might work with a user
program. Assume a program (named KJRCHASE) that asks for five items of
information about a customer purchase:

Dept. name:
Dept. number:
Customer name:
Acct. number:
Amount of purchase:

A given department (for instance, the hardware department) might use a
CPL program (named P. CPL) to invoke the PURCHASE program and pass it
its first two items of information. The statements would look like
this:

&DATA R PURCHASE
HDWR
38

&TTY
&END

The example as shown could be a complete CPL program. Or, it might be
part of a larger program.

Second Edition 2-22

THE BASICS OF CPL

A terminal session might look like this:

OK, R P
dept. name: HEWR
dept. number: 38
customer name: K.L. Smith
acct. number: 35684
amount of purchase: 536.89
OK,

Motes

1. By using a loop and the RESPONSE function, you could wr i t e
a CPL program t h a t would pass information for any number of
purchases t o program PURCHASE. Chapter 5 explains the
RESPONSE function. Chapter 9 explains loops.

2 . Closely re la ted t o the &TTY d i rec t ive i s the &TTY_CONTIMJE
d i r ec t i ve . This d i rec t ive can bring input for a &D&TA
group from the terminal , j u s t as &TTY does. But, i t can
a l so fetch input for a &DATA group from a command input
f i l e . For information on t h i s d i r ec t ive , see Appendix D.

WHEN ERRORS OCCUR

Two types of e r ro rs can occur in CPL programs: CPL er rors (which
prevent the CPL in te rp re te r from executing i t s d i r e c t i v e s) , and PRIK)S
command e r ro r s , which prevent execution of the commands contained in
the f i l e .

When a CPL error i s encountered, the CPL in te rp re te r ha l t s execution of
the CPL f i l e and re turns you t o PRlfOS command level with an
explanatory error message. For example, misspelling &ARGS would
produce the following message:

OK, R BAD_EXAMPLE

CPL ERROR 52 ON LINE 1.
"&ARGGS11 i s not a d i r ec t ive (statement) recognized by CPL.

SOURCE: Sarggs foo

Execution of procedure terminated. BAD_EXAMPLE (cpl)
ER!

A l i s t of CPL error messages i s provided in Appendix B.

2-23 Second Edition

DOC4302-190

PRIMOS errors may represent one of two levels of severity: error or
warning. If a warning occurs, the CPL file continues operation. If an
error occurs, the file execution is halted and the user is returned to
PRIMOS command level, usually with an error message and ERi prompt.
(The error message generally includes the name of the command or
subsystem that generated it.)

Users can override the handling of PRIMOS errors. Chapters 10 and 15
show how to do this. They cannot change the handling of CPL errors.

HOW CPL PROGRAMS END: THE &RE1URN DIRECTIVE

Every CPL program ends with the directive &RETURN. You may either
supply this directive as the last line of the CPL file or may allow the
CPL interpreter to add the directive at the file's end.

You may also use the &RETJRN directive to stop the program before the
end of the file. For example:

&ARGS A

&IF %A% > 20 &THEN &RETURN
&ELSE &DO

&END
&RETURN

WHEN ONE CPL PROGRAM RUNS ANOTHER

By us ing t h e RESUME command, one CPL program can run a n o t h e r . For
example, a CPL program c a l l e d ACCTS_UPDATE might c o n t a i n t h e fo l lowing
commands:

COMO ACCTS_UPDATE.COMO
DATE
RESUME NEW_ACCTS
RESUME ACCTS_CLOSED
RESUME ADDRESS_CHANGES
COMO -E
SPOOL ACCTS_UPDATE.COMO

The t r a n s f e r of c o n t r o l t h a t occurs when one program runs ano ther i s
much t h e same a s t h e t r a n s f e r of c o n t r o l when a u s e r runs a program.

Second E d i t i o n 2-24

THE BASICS OF CPL

For example, when a user runs ACCTS_UPQATE, the following ac t ions
occur:

1. The user gives the command,

RESUME ACCTSJJPDATE

2. PRIMOS opens the f i l e 2CCTS_UEDATE. CPL on some ava i lab le f i l e
un i t , and accepts commands from i t .

3 . ACCTS_UEDATE f in ishes with a &RETURN d i r e c t i v e .

4 . PRIMOS closes the f i l e and re turns control t o the user .

5 . The user gives the next command.

Similar ly, when ACCTS_UPDATE invokes NEW_jACCTS:

1. ACCTS_UPDATE passes the command RESUME NEWLACGTS to PRIMOS.

2. PRIMOS opens the f i l e NEfoLACCTS.CPL on some ava i lab le f i l e
un i t , and accepts commands from i t .

3 . NEKLACCTS ends with a &RETURN d i r ec t i ve .

4 . PRIMOS closes the f i l e and re turns control t o ACCTS_UPDATE.

5 . ACCTS_UPDATE passes i t s next command t o PRIMOS.

When one CPL program runs another, each has (or may have) i t s own se t
of arguments and var iab les . If NEW_ACCTS needs any arguments,
ACCT_UPDATES must pass them t o i t , as i n :

RESUME NEWLACCTS WEST_BRANCH

2-25 Second Edition

3
GPL Format

CPL FORMAT RULES

The format of CPL programs i s simple; nine rules presented in t h i s
chapter cover a l l general cases . (Any speci f ic ru les t h a t apply to a
s ingle advanced feature a re presented within the discussion of t h a t
feature .) As these rules demonstrate, the format of CPL i s s imilar to
t ha t of exis t ing high-level programming languages. Moreover, CPL's
format supports the PRIM3S command l i ne syntax unchanged, for ease of
wri t ing and use. This means t h a t :

• PRIMOS commands may be wri t ten i n to a CPL program j u s t as they
would be typed in t e r ac t i ve ly .

• CPL programs support PRIMDS's use of the semicolon as a command
del imiter . This allows you t o wr i t e two or more PRI1VDS commands
(separated by semicolons) on a s ingle l i n e .

3-1 Second Edition

DOC4302-190

^ RULE 1: Each statement in a CPL file must appear on a separate
line.

A statement is either a PRIMDS command, a sequence of PRIMDS commands
separated by semicolons, or a CPL directive plus its arguments. An
argument in turn may be either a PRIMDS command or another CPL
directive, with its argument(s). (See RULE 3 for handling of very long
statements.) Examples:

A MYJJFD

This statement shows a single command on a line by itself.

CR SUBUFD1; A *>SUBUFDl

This statement represents two commands separated by a semicolon.

&IF %VAR% = 1 &THEN SEG #FIRSTFILE

The &THEN directive is the argument for the &IF directive. The command
SEG #FIRSTFILE is the argument for the &THEN directive. Thus, this
line represents one directive plus arguments.

&IF %VAR% = 1 &THEN &GOTO LABELl
&ELSE &IF %VAR% = 3 &THEN &GOTO LABEL3

The &ELSE directive is NOT an argument for the &IF directive.
Therefore, it—with its arguments—goes on a new line.

&DO
SEG #FIRSTFILE
SEG #SEOONDFILE

&END

The directives &DO and &END go on lines by themselves. Each statement
in the &DO group has a line to itself.

• RULE 2: A statement may start anywhere on the line.

We suggest that you indent CPL programs for ease of reading, as you
would indent any structured program. But there are no rules governing
indentation.

Second Edition 3-2

CPL FORMAT

• RULE 3: To continue a statement over two or more lines place a
tilde (~) at the end of each incomplete line.

This allows you to create whatever indentations you like. For example:

&IF %VAR% = 1~
&THEN SEG #FIRSTFILE
&ELSE~
&IF %VAR% = 2~
&THEN SEG #SEC]ONDFILE
&ELSE SEG #LASTFILE

If there is a blank between the tilde and the word that precedes it, or
if the beginning of the next line is indented by one or more spaces,
the contents of the two lines are separated by one space. For example:

BREAK ~
HERE

is read as:

BREAK HERE

If no space precedes the tilde and the next line starts in column 1,
the two lines are concatenated with no space between them. For
example:

NO BREAK~
HERE

is the same as:

NO BREAKHERE

• RULE 4: Comments may be included in CPL programs by preceding each
comment with a slash and asterisk (/*).

Examples:

SEG #FIRSTFILE /*FIRSTFILE does such-and-so

&IF %VAR% = 1 &THEN SEG #FIRSTFILE /*Test for case 1

Comments end a t the end of the physical l ine on which they appear.
They are not continued onto the next l i n e , even when a t i l d e i s used t o
mark an incomplete statement.

3-3 Second Edition

DOC4302-190

Thus, the statement:

&IF %VAR% = 1 /*Comment~
&THEN /*more comment"
SEG #MYPILE /*more comment

is read as &IF %VAR% = 1 &THEN SEG #MYFILE. The comments are ignored,
(that is, not evaluated or passed to the command processor).

^ RULE 5: Every CPL file ends with a &RETURN directive. If the user
omits the &RET0RN directive, it is supplied automatically by CPL.

As its name implies, the &RETJRN directive halts execution of the CPL
procedure and returns control to its "caller". For detailed
information on the &RETURN directive, see Chapter 15.

^ RULE 6: Filenames for CPL programs follow Prime's standard rules
for filenames and end with .CPL.

Filenames must not exceed 32 characters. Allowable characters are A-Z,
0-9, _ # $ - . * &. The first character may not be numeric. The CPL
interpreter translates lower case characters to upper case. The .CPL
suffix is included in the 32-character limit, even though you do not
need to specify the suffix when you invoke the file.

• RULE 7: Variable names must also follow standard rules.

Variable names may not exceed 32 characters in length. They may
contain only the characters A-Z (upper and lower case), 0-9, underscore
(_), and dot (.). (The CPL interpreter translates lower case letters
to upper case.) Names of local variables (such as those defined by the
&ARGS directive) must begin with a letter. Names of global variables
(explained in Chapter 4) must begin with a dot.

• RULE 8: Any operators in a CPL expression must be preceded and
followed by one or more spaces.

CPL uses the arithmetic operators +, -, *, /, unary +, and unary -;
the logical operators & (and), | (or), and * (not); and the relational
operators =, <, >, <=, >=, and ~=. Parentheses must also be preceded
and followed by blanks. For example:

(3 + 5) * 4
&IF %THIS% > %THAT%

Second Edition 3-4

CPL FORMAT

This spacing rule prevents confusion between operations and text
strings. For example, "B > A" is a logical statement that means "B is
greater than A". "B>A" is a pathname. Insisting on the use of spaces
in the logical expression keeps the distinction clear for users and for
the CPL interpreter.

• RULE 9. Any string containing blanks or special characters
(defined below) must be placed inside single quotes when the string
is used as the value of a variable.

Special characters are:

• Single quotes (these must be doubled inside the string). For
example:

'I1'm a quoted string1

• Commas (,)

'I1'm quoted, too'

• Square brackets ([])

'Don' 't evaluate this [function call]'

• Semicolons (;)

'This ; i s n ' ' t ; a; l i s t ; of; arguments'

• Percent signs (%)

'Don ' ' t use the value for t h i s %variable%'

• Hyphens a t the beginning of s t r i ngs , when the s t r i ng i s not a
CPL option argument. (Option arguments a re explained in Chapter
13.)

•-64V i s a FORTRAN option'

• CPL expressions, if you don ' t want them evaluated.

•2 + 3 '
'%A% > %B%'

3-5 Second Edition

DOC4302-190

CPL does not evaluate variable references, function calls, or
expressions inside quoted strings. "Thus, 2 + 3 is an expression
but ' 2 + 3 ' (quoted) is merely a string. Hence,

2 + 3 = 5

is TRUE, since 2 plus 3 equals 5; but

'2 + 3' = 5

is FALSE, since the strings "'2 + 3'" and the string "5" are not
identical.

Note

If operator characters are not set off by blanks, quotes are
not needed. Thus, the expression A > B (which contains the >
operator) must be quoted if it is to remain the character
string A > B, rather than being evaluated and replaced with the
character string TRUE or FALSE; but the pathname A>B does not
need to be quoted.

Using Quoted Strings

Whenever you use a quoted string in CPL, the quotes are considered part
of the string. They do not disappear unless you remove them with the
CPL unquote function (discussed below). Thus, you can pass quoted
strings to PRIiyDS.

For example, assume a program SP.CPL which begins:

&ARGS pathname
SPOOL %pathname% -FORM WHITE

Suppose you needed t o pass t h i s program a pathname containing a
password. PRIMOS demands t ha t you put such a pathname inside quotat ion
marks. Therefore, you would type:

R SP 'TOP SECRET>NEEDLESS>REPORT'

SP.CPL would pass PRIiyDS t h i s command, with the pathname correct ly
quoted inside i t :

SPOOL 'TOP SECRET>NEEDLESS>REPORT' -FORM WHITE

Second Edition 3-6

CPL FORMAT

Concatenating Quoted Strings: Concatenating two quoted strings
produces a single quoted string. For example, if

%A% = 'I"m a quo1

and

%B% = 'ted string1

then

%A%%B% = 'I*'m a quoted string1

Quoting and Unquoting Strings: CPL provides built-in QUOTE and UNQUOTE
functions to place quotes around strings and to remove quotes from
strings. The UNQUOTE function is particularly useful, as it allows you
to use quoted strings as arguments for a CPL program, then remove the
strings inside the program. For example, you might want to pass some
PRIMOS command options, which begin with hyphens, as arguments. You
could write a CPL file (F.CPL) like this:

&ARGS filename; options
FTN %filename% -64V -L %filename%.LIST [UNQUOTE %options%]

With this program, the command:

R F FOO '-XREF -EXPLIST1

produces the command

FTN POO -64V -L FOO. LIST -XREF -EXPLIST

The UNQUOTE function removes the single quotes from the string '-XREF
-EXPLIST', replaces the function call with the unquoted string, and
passes the finished command to the command processor.

F.CPL can also be invoked by the command:

R F FOO

This invocation produces the PRINDS command:

FTN FOO -64V -L FOO. LIST

The reference to [UNQUOTE %options%] first becomes [UNQUOTE • '] , and
then becomes the unquoted null string, (that is, a string of length 0,
containing no characters), which is ignored by PRINDS.

Note

For more information on quoted strings, see Chapter 12. For a
better way to pass command options as arguments, see Chapter 6.

3-7 Second Edition

PART II

The Intermediate Subset

4
Variables in GPL

INTRODUCTION

This chapter d iscusses :

• Defining var iables with the &SET_VAR (&S) d i r ec t i ve .

• The three types of values—str ing, in teger , and log ica l—tha t
var iables can possess.

• The operations t h a t can be performed on these three types of
values .

• Local and global var iab les .

• The four PRIMDS commands t h a t govern global va r iab les .

THE &SETVAR DIRECTIVE

The &SETVAR d i rec t ive has the form:

&SET_VAR name-1 {,name-2...,name-n} := value
&S

4-1 Second Edition

DOC4302-190

name-1 through name-n are e i the r :

• Valid var iable names (for local or global variables)

• Expressions t ha t evaluate to va l id var iable names. This allows
you t o simulate array var iables , as i n :

&SET_VAR A%I% := 30

(See Chapter 11 for de t a i l s .)

value may be

• A character string (up to 1024 characters, quoted if necessary)

• An integer (-2**31 + 1 to 2**31 - 1)

• A logical value (some form of TRUE or FALSE)

• An expression which evaluates to any of the above

Note

Real numbers may not be used as variable values.

The assignment symbol (:=) must be given explicitly.

Examples

^ &S A, B, C := 0

This example defines three local var iables , A, B, and C, and se t s the
value of each t o zero.

• &ARGS UFD
&IF %UFD% = N ~

ScTHEN &S UFD := ACCTS>RECV>NORTH
&ELSE &IF %UFD% = S ~

&THEN &S UFD := ACCTS>RECV>SCU'IH
&ELSE &S UFD := ACCTS>RECV>CENTRAL

in t h i s example, the &SET_VAR di rec t ive allows lengthy arguments t o be
entered in abbreviated form, then expands those arguments t o t h e i r fu l l
values.

Second Edition 4-2

VARIABLES IN CPL

INTEGER VALUES FOR VARIABLES

All CPL var iable values a re character s t r i n g s . However, some character
s t r ings (such as 3 , 259, -6847) can be in terpre ted as integer values.
CPL allows standard ar i thmet ic operations on these in t ege r s . (For a
summary, see Table 2-1.) The following examples a re a l l val id
statements:

&SETVAR A

&SET_VAR B

&SETVAR C

&SETVAR D

&SETVAR E

&SETVAR F

:= 4

:= 5

:= %B% + 1

:= %C% - %B%

:= (%A% + 2)

:= %E% / %B%

* %C%

Note

(A =

(B =

(C =

(D =

(E =

(F =

4)

5)

6)

1)

36)

7)

Remember t o leave a t l e a s t one blank space before and a f te r
ar i thmetic and logical operators—including parentheses and the
minus signs in negative numbers.

Examples Using Str ing and Integer Values

• &SETVAR A := ELLEN
&SETVAR B := [LENGTH %A%]

This example gives the value ELLEN to the var iab le A. Then i t uses
CPL's LENGTH function t o s e t the var iable B to the length of A. B
therefore has the value 5 .

Note

Do not t r y to perform ari thmetic operations on charac te r - s t r ing
va r i ab les . For example, do NOT say:

&SET_VAR A := ELLEN
&SETVAR B := %A% + 1

Executing these commands produces an error message and aborts
execution of the CPL program.

4-3 Second Edition

DOC4302-190

^ &SETVAR A := MYJJFD
&SETVAR B := >THISFILE
&SETVAR C := %A%%B%

This example uses CPL's automatic s t r ing concatenation t o s e t the value
of C to the pathname MY_UFD>THISFILE. Since CPL merely subs t i tu tes the
value of the var iable for the reference—that i s , subs t i tu tes "Nrc_UFD"
for "%A%" and ">THISFILE" for "%B%",—a value composed of two
juxtaposed var iable references evaluates to a s ingle character s t r i n g .

^ &SETVAR A
&SET_VAR B
&SET_VAR A
&SET VAR B

:= 5
:= 6
:= %A%%B%
:= %A% + %B%

Since integers, in CPL, are actually character strings which evaluate
to integer values, integers too can be concatenated. When the four
commands in this example have been executed, the value of A is 56 and
the value of B is 62.

LOGICAL VALUES FOR VARIABLES

CPL variables can also take the logical values, TRUE and FALSE. Users
may use the strings "TRUE," "true," "T," and "t" to represent logical
(or Boolean) true, and "FALSE," "false," "F," or "f" for Boolean false.
CPL itself uses the spellings "TRUE" and "FALSE". You can set a
logical value yourself:

&S A := TRUE

Or you can have CPL do calculat ions which produce logica l r e s u l t s . For
example:

&SET_VAR A := 6
&SET_VAR B := 12
&SETVAR C := %A% > %B%

When these three d i rec t ives have been executed, C has the value FALSE.

Second Edition 4-4

VARIABLES IN CPL

Note

The logical operators — >, >=, = , <=, and < — perform string
comparisons if either operand is a character string. If both
operands are integers or Boolean values, an arithmetic
comparison is done. (Boolean TRUE = 1, and Boolean FALSE = 0.)
Thus, the following expressions are all true:

128 > 40

BARREL > APPLE

TRUE > FALSE (because 1 > 0)

34 > FALSE (because 34 > 0)

'FALSE' > 34 (because F > 3)

LOCAL AND GLOBAL VARIABLES

CPL supports two kinds of variables: local variables and global
variables.

Local Variables

All variables shown so far have been local variables. Local variables:

• Are defined inside a running CPL program

• Are defined by either:

— The &ARGS directive (shown in earlier examples)

— The &SET_VAR (or &S) directive (explained in this chapter)

— The SETJVAR command (explained in this chapter)

• Are known only to the program that creates them

• Disappear when the program that creates them returns or
terminates

Precisely because they are "local"—that is, defined within one
activation of one program—local variables from one program never
interfere with those of any other program.

4-5 Second Edition

D0C4302-190

Global Variables

Sometimes you want t o define variables t ha t can be known t o , and
possibly modified by, a group of programs, ra ther than a s ingle
program. At these times, you can use global var iab les . Global
variables are stored in one or more f i l e s ins ide your UFD (or ins ide a
subdirectory) . When you ac t iva te a global var iable f i l e , a l l the
var iables i t contains can be used by you, in t e rac t ive ly , for PRIMDS
commands, by a l l your CPL programs, and by programs wri t ten in
high-level languages. Global variables survive program termination and
logouts. Once defined, they l a s t un t i l you de le te them.

The PRINDS commands governing variables are shown in Table 4 - 1 .
are explained in greater de ta i l l a t e r in t h i s chapter.

They

Table 4-1
Variable-Handling Commands

Command

DEFINE_GVM

SET_VAR

LIST_VAR

DELETE_VAR

Funct ion

Creates or ac t iva tes a
global var iable f i l e

Defines a new var iable or
changes the value of an
exis t ing var iab le . If the
var iable i s a global
var iable , places i t in the
act ive global var iable
f i l e

Lis ts the var iables
contained in an ac t ive
global var iable f i l e

Deletes var iables from an
act ive global var iable
f i l e .

Second Edition 4-6

VARIABLES IN CPL

Global var iables a re pa r t i cu la r ly useful for providing easy
communication of var iable values among programs, as they may be s e t and
referenced:

• At command level

• By any of your CPL programs

• By high-level language programs

Note

Global variables are not designed for interprocess
communication. Attempts to use them for that purpose are not
guaranteed to work.

Global variables must have names that begin with dots (.). For
example:

.SIZE, .UFD

At command l e v e l , global var iables a re defined by the SET_VAR command.
Within a CPL program, they are defined by the &SETVAR d i r ec t ive or the
SET_VAR command. (They cannot be defined by the &ARGS d i rec t ive .)
They are defined from high-level programs by the GV$SET rout ine , and
referenced within high-level language programs by the GV$GET rout ine .
These routines a re described in Appendix E.

PRIMPS COMMANDS

The DEFINE_GVAR Command

Each u s e r ' s global var iables reside in a f i l e tha t i s created and
act ivated by the DEFINE_GVAR command (abbreviation: DEPGV) . The form:

DEFINE_GVAR pathname -CREATE

creates and ac t iva tes a new global var iable f i l e . (If the f i l e named
by pathname already e x i s t s , the command simply ac t iva tes i t .) The
command:

DEFINE_GVAR pathname

ac t iva tes an exis t ing global var iable f i l e . The DEFINE_GVAR command
may be used a t command level or inside a CPL program. You must c rea te
a global var iable f i l e before you define any global va r iab les ; and you
must ac t iva te the global var iable f i l e before using the var iab les i t
contains.

4-7 Second Edition

19.0

DOC4302-190

For example, to create an empty global var iable f i l e named MY_VARS,
give the command:

DEFINE_GVAR MY_VARS -CREATE

To use the f i l e again in a l a t e r session, use the command:

DEPINE_GVAR MY_VARS

Note

If the directory containing the global var iable i s protected by
a password, then the user must provide the fu l l pathname of the
f i l e within the DEFINE_GVAR command. For example:

DEFINE_GVAR '<DISK>MY_DIR SECRET>MY_VARS'

Whenever the f i l e i s ac t ive , you may add t o , de le te , l i s t , and make use
of any variables i t contains. If you reference a global var iable in a
CPL program without having defined a global var iable f i l e , the program
aborts with an error message.

A user may create more than one global var iable f i l e , but may only have
one global var iable f i l e active a t any time. Therefore, the
DEFINE_GVAR command ac t iva tes the named f i l e and turns off any global
var iable f i l e already ac t ive . Logging out a l so deact ivates an ac t ive
global var iable f i l e . Global variable f i l e s may a lso be deactivated by
the command:

DEFINE_GVAR -OFF

Pathnames cannot be used with t h i s form of the command.

Global var iable f i l e s may be deleted with the standard PRI1VDS DELETE
command. Make sure the f i l e i s inact ive (using the command DEFGV -OFF,
if necessary) before you delete i t . (If you f a i l t o do t h i s , you wi l l
create a confusing s i tua t ion in which you w i l l be able to l i s t
variables from your deleted f i l e , but w i l l not be able t o add or modify
any var iables .)

The SET__VAR Command

The SET_VAR command has the format:

SETVAR name {:=} value

name i s any legal variable name, up to 32 characters long. Names of
global var iables must begin with a dot (.)

Second Edition 4-8

VARIABLES IN CPL

value can be:

• Any character s t r i n g , up t o 1024 characters long. Lowercase
characters a re not converted to uppercase. If the s t r ing
contains special characters (as explained in Chapter 3) , i t must
be enclosed in s ingle quotes. The s ingle quotes a re included in
the character count.

• A numeric character s t r i ng representing an in teger between the
values of -2**31 + 1 to 2**31 - 1 .

• A character s t r i ng consist ing of the log ica l value TRUE or FALSE
(the forms TPUE, T, t r ue , t , FALSE, F, f a l se , and f are
acceptable) .

The assignment symbol (:=) i s opt ional .
For example:

SETVAR .A ALPHA

defines the global var iab le .A and assigns i t the value ALPHA.

You can use the SET_VAR command in te rac t ive ly , a t command l e v e l , to
define global var iab les . Or, you may use i t ins ide a CPL program t o
define e i the r global or local var iab les . However, since the &SETVAR
di rec t ive i s f as te r than the SET_VAR command, we recommend t h a t you use
the SET_VAR command a t command level only, and use the &SET_VAR
di rec t ive inside CPL programs.

For example, a CPL program (POO. CPL) might contain the following
statements:

/*Set var iab le .ERR_REPORT t o the nul l s t r i ng
&SETVAR .ERR^REFORT : =
RESUME BAR.CPL

/ * BAR may change value of .ERP̂ REPORT
/ * When BAR re turns , FOO checks t o see
/ * if value has been changed

&IF [NULL %.ERR_REPORT%] &THEN RESUME BAR2
/* I f .ERRJ*EPORT i s s t i l l nu l l ,
/*every th ing ' s OK, keep going

&ELSE &DO
/•Something went wrong; send message and
/ * h a l t execution

TYPE Error reported by program BAR
&RETURN &MESSAGE %. ERFLREPORT%

&END

4-9 Second Edition

DOC4302-190

The DELETE_VAR Command

The DELETE_VAR command removes one or more global var iables from an
act ive global var iable f i l e . I t s form i s :

DELETE_VAR i d l {.. .idn}

i d l through idn may be names of global var iab les , they may be
wildcards, or they may be var iable references or function c a l l s which
evaluate t o the names of global var iables . All var iables in the l i s t
a re deleted from the f i l e . For example:

DEFINE_GVAR MY_VARS
DELETE_VAR .UFD

deletes the var iable .UFD from the f i l e MY_VARS. The command:

DELETE_VAR .A .B .C

dele tes three var iab les , .A, .B, and .C.

DELETE_VAR .AB@@

deletes a l l variables in the f i l e tha t begin with the l e t t e r s ,AB.

The LIST_VAR Command

The command LIST_VAR l i s t s some or a l l global var iables contained in an
ac t ive global var iable f i l e , with the i r values. I t s form i s :

LIST_VAR {name-1 . . . name-n}

name-1 through name-n may be e i ther global var iable names or wildcard
names. If no names are given, the LIST_VAR command l i s t s a l l the
variables in the f i l e .

For example:

OK, list_var
.ERRJYESSAGE Sorry, try again!
.UFD alice
.DIGITS 0123456789
,AL AB(X>EFGHIJKIJyimPQRSTUVWXYZ
.ERRJ*EFORT
OK,

In t h i s example, the value of .ERR_REPORT i s the nu l l s t r i n g .

Second Edition 4-10

VARIABLES IN CPL

If names are given, LIST_VAR l i s t s only those names (or groups of
names) and t h e i r values. For example:

OK, list_var ,err@
.ERR_MESSAGE Sorry, t r y again!
.ERRJIEPORT
OK, l i s t_va r . a l
. AL ABCDEFGHIJKLMNOPQRSTOVWXY Z
OK,

4 - 1 1 Second Edition

Terminal Input and
Output in CPL

OVERVIEW

Input

CPL provides three facilities for input from the terminal:

• The &TTY directive (or its extension, the &TTY_CONTINUE
directive) is used within a &DATA group to allow the user to ± y , u

enter information interactively within a utility or a user
program.

• The QUERY function, a logical (Boolean) function, prints a
question at the user's terminal and accepts a YES or NO answer.
The QUERY function interprets "YES" answers as TRUE and "NO"
answers as "FALSE". If any other answer is given, it prompts
"Please answer YES or NO".

• The RESPONSE function prints a request for information at the
user's terminal. RESPONSE accepts any character string the user
types in. The string is put in quotes, if it contains special
characters, and is then returned as the value of the function:
that is, the string replaces the function call.

The &TTY directive is discussed in Chapter 2. The &TTY_CONTINUE
directive is discussed in the second section of this chapter, The
Command Input Stream. The QUERY and RESPONSE directives are discussed 19.0
in both the first and second sections of this chapter, Terminal Input
and The Command Input Stream. The QUERY and RESPONSE functions are
discussed in the next section of this chapter.

5-1 Second Edition

DOC4302-190

Output

Two facilities allow output to be printed at the terminal or into
COMOUTPUT files:

• The PRIMOS TYPE command prints any message. This command can be
placed anywhere within a CPL file.

• The &MESSAGE clause of the &RETURN and &STOP directives send a
message when the CPL program "returns", or ends. It is
particularly useful for announcing the success or failure of a
program, or for warning a user that a command line has been
entered incorrectly.

Examples of the TYPE command and the &MESSAGE clause in use are given
in the last section of this chapter. (The &MESSAGE clause may also be
used with the error-handling &STOP directive. See Chapter 15, ERROR
AND CONDITION HANDLING, for details.)

TERMINAL INPUT

The QUERY Function

The form of the QUERY function is:

19.0i [QUERY {text} {default} {-TTY}]

Example:

[QUERY !Et tu, Brute1 TRUE]

When the QUERY function is encountered, CPL prints text on the user's
terminal, follows it with a question mark, and then waits for the user
to type an answer. The QUERY function returns either TRUE or FALSE,
depending on the user's response, as described below.

Text: The text for this function may be any character string up to 1024
characters long. If text contains blanks, it must be placed inside
single quotes.

If text is omitted, or is the null string, no prompt is printed. This
option is provided for use when prompts or instructions are printed by
some other means, such as the TYPE command or output from a user
program.

Second Edition 5-2

INHJT AND OUTPUT

Quoted Strings in Text; Variables and function calls are not evaluated
inside quoted strings. If you write [QUERY 'SPOOL %FILE%'], the user
will see:

SPOOL %FILE%?

at the terminal. Writing:

&SET_VAR T := 'SPOOL '%FILE%
[QUERY %T%]

lets you use the actual filename in the query.

Default: The default (if given) should be either TRUE, T, FALSE, or F
(upper or lower case). If default is specified, then a null response
to the query (that is, a carriage-return, or empty line), is taken as
the function's default response. If no default is specified, a
carriage-return is interpreted as FALSE. QUERY accepts YES, yes, Y, y,
OK, and ok as TRUE answers. It accepts NO, no, N, and n as FALSE.

-TTY: The -TTY option forces the QUERY function to take input from the
terminal. If this option is present, the CPL program containing the
query cannot be executed as a phantom or Batch job. (For example, the
function call shown above would abort any Batch or phantom program that
contained it.)

If the -TTY option is not used, the QUERY function returns one step up
the command input stream to get its input. This can be the terminal. 19.0
Or, it can be a &DATA block inside another CPL program. Or, it can be
a command input file.

These mechanisms are slightly more complex than those involved in
simply going to the terminal for a response. Therefore, they are
discussed in the second section of this chapter, after the discussion
of the QUERY and RESPONSE functions themselves.

Examples: Here are some examples of the QUERY function in use.

• &DATA ED %NAME%
T

(Editor Commands)

FILE
&END
&IF [QUERY 'Spool f i l e '] ~

&THEN SPOOL %NAME% -AT DOC -FORM WHITE

5-3 Second E d i t i o n

DOC4302-190

A YES answer to the query spools the f i l e . A NO, or a car r iage- re turn ,
does not spool i t . Any other answer produces the message,

Please answer "YES" or "NO"?

For example, if the above program were named TEST.CPL, t h i s might
happen:

OK, R TEST BOOK
SPOOL FILE? SURE
Please answer "YES" or "NO"? Y
[SPOOL rev 18.0]
PRT011 spooled, records: 1, name:BOOK
OK,

• &ARGS FILENAME
FIN %FILENAME% -64V -L % FILENAME?;. LIST
SelF [QUERY 'SPOOL LISTING FILE' TRUE] ~

&THEN SPOOL %FILENAME%.LIST
&RETURN

Again, the user chooses whether or not a f i l e w i l l be spooled. This
time, however, default has been given as TRUE. Therefore, a
carr iage-re turn as answer wi l l spool the f i l e .

OK, R FTN__TEST THISFILE
0000 ERRORS [<.MAIN.>FTN-REV18.0]
SPOOL LISTING FILE?
[SPOOL rev 18.0]
PRT008 spooled, records: 1, name:THISFILE.LIST
OK,

The RESPONSE Function

The form of the RESPONSE function pa ra l l e l s the form of the QUERY
function:

19.01 [RESPONSE {text} {default} {-TTY}]

This function re turns the tex t s t r ing typed by ttie user (up t o 1024
charac te rs) .

Text, again, i s a character s t r ing of up t o 1024 characters , quoted i f
i t contains blanks. The t ex t , followed by a colon, appears a t the
u se r ' s terminal . Default, if given, i s another character s t r i n g . If
i t contains blanks, i t too must be quoted. If no defaul t i s specif ied,
the default answer (produced by a carr iage-return) i s the nu l l s t r i ng .

Second Edition 5-4

INPUT AND OUTPUT

For example:

&ARGS BOOK
&IF [NULL %BOOK%]~

&THEN &SETVAR BOOK := [RESPONSE 'Which Book1]

This example t e s t s for a nu l l argument. If i t f inds one, i t asks the
user exp l i c i t l y for the argument, then uses the &SET_VAR d i rec t ive t o
give the var iab le i t s correct value.

If t ex t and default a re omitted, or if t ex t i s the nu l l s t r i ng (' ') , no
prompt i s pr in ted .

The -TTY option for the RESPONSE function i s iden t ica l t o t h a t for the
QUERY function.

The Command Input Stream

As s t a ted e a r l i e r , the &TTY d i rec t ive , and the QUERY and RESPONSE
functions used with the -TTY option, a l l i n s i s t on input from the
terminal . CPL programs employing these statements canot be invoked as
phantoms or Batch jobs ; the request for terminal input would abort
t he i r execution.

in cont ras t , the &TTY_CONTINUE d i rec t ive , and the QUERY and RESPONSE
functions without the -TTY option, seek t h e i r input from the command
input stream. Therefore, they can accept input from any of three
sources:

• the terminal
19.0

• a &DATA group in a CPL program

• a COMINPUT file

If the CPL program demanding the input was invoked from the terminal,
i t takes i t s input from the terminal . If i t was invoked from a command
input f i l e , i t seeks i t s input the re . If i t was invoked by a &DATA
d i rec t ive , i t gets i t s input from the &DATA group.

Here i s a sample CPL program containing a &TTY_CONTINUE d i r ec t ive .
(The program invokes the EDITOR to ed i t a specified f i l e ; goes t o the
bottom of the f i l e ; goes i n to input mode; and waits for input .

&DATA ED TESTFILE
B

&TTY_CONTINUE
SEND
&RETURN

5-5 Second Edition

19.0

DOC4302-190

This program (named LENGTHEN_FILE.CPL) can be invoked from the
terminal . A sample session might look l i k e t h i s :

OK, R LENGTHEN_FILE.CPL
EDIT
B
•
INPUT
We can add l ines
To t h i s f i l e .

EDIT
FILE

Invoking the Program From a OOMINHJT F i l e

LENGTflFJSLFILE can a lso be invoked from a command input f i l e such as
t h i s one:

R LENGTflEN_FILE.CPL
Add t h i s l i ne
And t h i s one
And t h i s one.
•
FILE
03 -TTY

The f i r s t l i n e of t h i s f i l e invokes the CPL program shown above. The
second, th i rd , and fourth l ines contain input t o be added t o TESTFILE.
The f i f th l ine returns t o EDIT mode, and the sixth l i ne f i l e s TESTFILE
and re turns from the EDITOR.

At t h i s point , control returns t o LENGTHEN_FILE, which in turn re turns
to i t s c a l l e r , the command input f i l e , which then re turns to the
terminal . A terminal session which ran the GOMINFUT f i l e might look
l i ke t h i s :

OK, 00 TTY_Q0NT.O0MI
OK, R LENGTHEN_FILE.CPL
EDIT
B
•
INPUT
Add this line
And this one
And this one.

EDIT
FILE
TESTFILE
OK, 00 -TTY

Second Edition 5-6

INHJT AND OUTPUT

Invoking t h e Program From a &DATA Group

I f a CPL program were t o invoke LENGTHEN_FILE, i t would do i t l i k e
t h i s :

&DATA R LENGTHEN_FILE.CPL
I f we keep adding l i n e s
This f i l e w i l l g e t very long .
•
f

FILE
SEND

Again, t h e f i r s t l i n e invokes LENGTHENJFILE; t h e nex t t h r e e l eng then
i t ; and t h e fou r th and f i f t h c l o s e t he f i l e , pu t i t away, and l e a v e
t h e EDITOR.

A t e rmina l s e s s i o n might look l i k e t h i s :

OK, R TTCOONT
EDIT
B

INPUT
If we keep adding l i n e s
This f i l e w i l l g e t very long .
7
EDIT
FILE 1 9 ' °
TESTFILE
OK,

How Er ro r s Are Handled

What would happen i f t h e programmer fo rgo t t h e semicolon or FILE
s t a tmen t i n t h e CPL or COMINPUT f i l e ? The OOMINPUT program would add
every l i n e i n i t s f i l e (inc lud ing t h e CO -TTY which should t e r m i n a t e
t h e f i l e) t o TESTFILE. Then i t would r e t u r n t o t h e t e rmina l with an
e r r o r message and a r eques t for i n p u t . The u s e r would then have t o
l eave t h e EDITOR i n t e r a c t i v e l y i n o rde r t o r e t u r n t o PRIfCS command
l e v e l . The sequence of even t s would look l i k e t h i s :

OK, CO TTY_CONT.COMI
OK, R LENGTHEN_FILE.CPL
EDIT
B

INPUT
Add t h i s l i n e
And t h i s one
And t h i s one .
FILE
CO -TTY

5-7 Second E d i t i o n

DOC4302-190

19.0

End of file. Cominput. (Input from terminal.)
•
EDIT
FILE
TESTFILE
OK,

The CPL program, on the other hand, would recognize t ha t an error had
occurred when i t came t o the &END statement in the &DATA group. I t
would simply terminate with an error message, l i k e t h i s :

OK, R TTY_CONT
EDIT
B
•
INRJT
If we keep adding lines
This file will get very long.
FILE

CPL ERROR 35 ON LINE 5. LAST TOKEN WAS: "&END".
The Primos command invoked by this &DATA block has read all supplied
input data and is requesting more. To suppress this message and
continue execution using terminal input, use the &TTY directive.

SOURCE: &END

ER!

Note that either program would abort if it were being run as a Batch
job or a phantom, since such programs cannot seek help from the
terminal.

TERMINAL OUTPUT

The TYPE Command

The PRIMOS TYPE command has the form:

TYPE text

text is a character string of up to 251 characters. When the TYPE
command is executed, text is typed at the user's terminal.

Everything following "TYPE" is taken as text, so there is no need to
quote strings. (TYPE does remove one set of quotes from around text
before it prints it.) Since TYPE is an internal command, it can be
used whenever a PRIMOS-level command can be used within a CPL file.
Since text does not have to be quoted, it can contain variables and
function calls.

Second Edition 5-8

INPUT AND OUTPUT

For example, we might w r i t e a program, c a l l e d ED_TEST, a s fo l lows :

SARGS BOOK
/ * Check for n u l l argument

&IF [NULL %BOOK%] &THEN ~
&SETVAR BOOK := [RESPONSE ' P l e a s e spec i fy book1]

ED %BOOK%
TYPE Do you want %BOOK% spooled?
&IF [QUERY " TRUE] ~

&THEN SPOOL %BOOK%
TYPE Thank you.
TYPE Good-bye.

A terminal session using t h i s program might look l i k e t h i s :

OK, r ed_test sample
EDIT
p23
.NULL.
This i s a sample f i l e .
This i s the second l ine of the f i l e .
BOTTOM

INPUT
Here i s a t h i rd l i ne for the f i l e .

EDIT
f i l e
SAMPLE
Do you want SAMPLE spooled?
yes
[SPOOL rev 18.0]
PRT022 spooled , r e c o r d s : 1 , name:SAMPLE
Thank you.
Good-bye.
OK,

The &MESSAGE Clause

The &MESSAGE clause is used in the &RETJRN directive to cause a CPL
program to print a message and return to its caller. Thus, it is
useful for announcing the success or failure of a program. Its form
is:

&RETURN &MESSAGE text

5-9 Second Edition

DOC4302-190

text may be any character string up to 1024 characters. It does not
need to be quoted if it contains blanks. For example:

&IF %LEFTOVERS% = 0 &THEN~
&RETURN &MESSAGE It worked!

&ELSE~
&RETURN &MESSAGE %LEFTOVERS% left undone.

The &MESSAGE clause can also be used to send PRIM3S-Iike messages
warning users of the correct command line format for a CPL file. For
example,

&ARGS UFD
&IF [NULL %UFD%] &THEN &RETORN &MESSAGE ~

Usage: R EXAMPLE UFD

Second Ed i t i on 5-10

6
Arguments With

Type-checking and
Default Values

INTRODUCTION

Previous chapters of this guide have included examples of programs that
checked for the existence of needed arguments and took action if they
did not find them.

The methods shown have included:

1. Setting up a default action
(shown in Chapter 2)

Using CPL's RESPONSE function
to demand the argument from
the user (shown in Chapter 5)

Using CPL's &RETURN &MESSAGE
directive to terminate the
CPL program and tell the user
the appropriate command
format (shown in Chapter 5)

&ARGS UFD
&IF [NULL %UFD%]~

&THEN ATTACH MY_UFD
&ELSE ATTACH %UFD%

&ARGS UFD
&IF [NULL %UFD%]~

&THEN &SET_VAR UFD :=~
[RESPONSE 'which UFD do you"
want t o a t t a c h t o ']

&ARGS
&IF [NULL %UFD%] &THEN~

&RETURN &MESSAGET
USAGE: R EXAMPLE ufd-name

6-1 Second E d i t i o n

DOC4302-190

This chapter introduces:

• A method of establishing default values for arguments within the
&ARGS directive itself. With this method, each argument emitted
from the command line is automatically assigned its designated
default value, rather than being set to the system default.

• A method for setting a type specification (character string,
integer, etc.) for each argument in the &ARGS directive. When
this is done, each argument given in the command line is checked
against the specified type. If the types do not match, the CPL
program terminates with an explanatory error message.

• A special type of argument, REST.

TYPE CHECKING AND DEFAULT SPECIFICATION

The form of the &ARGS directive that provides type checking and default
specification is:

&ARGS name-1 : type-1 = default-l{;...name-N : type-N = default-N}

Either type or default (or both) may be emitted for any name. If
default is omitted, the equals sign that precedes it is also omitted.
The colon that follows name is omitted only when both type and default
are omitted. Spaces may precede or follow the equals sign, colon, and
semicolon. They are not required.

Default may be a constant or a variable reference. It must be quoted
if it contains a blank or a special character. It may not be an
expression or a function call. Table 6-1 shows all types and their
defaults.

Examples

^ &ARGS FILENAME

Filename i s established as a var iable of type CHAR (i . e . , character
s t r i n g) . I t s default i s the nul l s t r ing (") .

• &ARGS UFD:TREE=MY_UFD

The var iable UFD must be a va l id treename (that i s , a pathname or
directory name). I t s default value i s MYJJFD.

Second Edition 6-2

TYPE-CHECKING AND DEFAULT

Table 6-1
CPL Argument Types

Argument Type

CHAR

CHARL

TREE

ENTRY

DEC

OCT

HEX

PTR

DATE

REST

UNCL

Explanation

Any character string up to
1024 characters long, mapped
to upper case (default)

Any character string up to
1024 characters long,
no case shifting

A filename, directory name, or
pathname, up to 128 characters
long. The last element of the
pathname (that is, the final
file or directory name) may
contain wildcard characters. (A)

A filename up to 32 characters
long; may contain wildcard
characters. (A)

A decimal integer (B)

An octal integer (B)

A hexadecimal integer (B)

Pointer; a virtual address
in the format "octal/octal"
(segno/wordno) (C)

Calendar date in the format
mm/dd/yy.hh:mm:ss or
yy-mm-dd.hh:mm:ss

The remainder of the
command line

All tokens not accounted
for in the &ARGS picture.
(Unclaimed arguments are
discussed in Chapter 13) .

CPL Default Value

• i

11

• i

11

0

0

0

7777/0
(the null pointer)

• i

11

11

(A) See Chapter 7 for explanation of wildcard characters.
(B) Numeric arguments must be within the range -2**31+1...2**31-1.
(C) User specified default values are not supported for this datatype.

6-3 Second Edition

DOC4302-190

• &ARGS NAME:=XXXXX; NUMBER:DEC

This d i rec t ive defines two var iables . NAME i s of type CHAR (by
defau l t) ; i t s default value i s XXXXX. NUMBER i s type DEC; any value
given for NUMBER must be a decimal in teger . I t s defaul t value i s the
system default value, 0.

^ &ARGS UFD:TREE=%.UFD%

This d i rec t ive declares a local variable named UFD. The value given
must be a val id treename. The default value i s the current value of
the global var iab le , .UFD. The global var iable f i l e containing .UFD
must be act ive for t h i s default t o function cor rec t ly . Otherwise, an
invocation without arguments produces the error message:

OK, r xl

CPL ERROR 1017 ON LINE 1. LAST TOKEN WAS: "SARGS".
In this &ARGS statement, a default value expression contains an
undefined variable reference, or a syntax error in a variable
reference.

SOURCE: &args ufd :tree =

Execution of procedure terminated. XI (cpl)
ER!

• SARGS HEX:HEX = 4AB

This directive declares one variable named HEX, giving it a default
value of 4AB (1195 decimal). The argument HEX will only accept values
that look like hexadecimal numbers. That is, it accepts strings that
contain only the digits 0-9 and the letters A-F, and that evaluate to a
hexadecimal number between the limits of -2**31+1 and 2**31-1. It
cannot distinguish between decimal, octal, and hexadecimal numerals:
it accepts all three and interprets them as hexadecimal. For example,
it would interpret the decimal number 20 as hexadecimal 20 (decimal
32).

W &ARGS EIGHT_BALL:OCT

This directive defines an octal variable named EIGHT_BALL. Octal
numbers can contain only the digits 0-7; therefore, a value for
EIGHTBALL containing any other digits or characters will be rejected
with the message:

Object "9n is not a valid octal integer, (cpl) ER!

Second Edition 6-4

TYPE-CHECKING AND DEFAULT

The arguments discussed in this chapter are position dependent
arguments. The first value found on the command line is assigned to
name-1, the second to name-2 and so on. (For position independent
arguments in CPL, see the discussion of Option Arguments in Chapter
13.)

How Type and Default Checking Works

When you use the &ARGS directive to specify type and default values,
CPL takes the following actions:

1. It reads the command line and assigns the arguments given to
the variable-names declared in the &ARGS directive.

2. It checks whether the first argument (name-1) was omitted. If
the argument was omitted, CPL assigns it its default value,
(default-1) as specified in the &ARGS directive. If no default
has been specified, CPL assigns it the system default value, as
shown in Table 6-1.

Note

Since these are positional arguments the first argument
is seen as "omitted" only when all arguments are
omitted. Otherwise, whatever comes first on the
command line (after the name of the CPL program itself)
is taken as the value of the first argument.

3. If the first argument was assigned a value in the command line,
CPL checks to see if the given value is of the right type.
(Acceptable types are defined in Table 6-1.)

4. If the value is not of the right type, CPL prints an
explanatory message and returns the user to command level with
an ERi prompt. For example:

OK, R EXAMPLE 5
Argument "5" is not a valid treename, (CPL)
ER!

5. If the value is of the right type, CPL accepts it and moves on
to check the next argument (or, if all arguments have been
checked and accepted, to execute the next directive or
command).

6-5 Second Edition

DOC4302-190

Example

Assume t h a t X.CPL contains the d i r ec t ive :

&ARGS WHO:ENTRY=JONES; HCWMANY:DEC=10

The following t ab le shows some invocations of X and t h e i r r e s u l t s :

Invocation Argument Values

R X SMITH 20 WHO = SMITH
HOWMANY = 20

R X CLARK WHO = CLARK
HOWMANY = 10 (default)

R X WHO = JONES (default)
HOWMANY = 10 (default)

R X 50 Error generated;
50 is not a valid filename.

USING REST ARGUMENTS

REST is a special argument type that allows the remainder of a command
line (after any other arguments have been read) to be passed as is to a
single variable without quoting.

REST arguments are designed for passing PRIMOS option arguments as
positional arguments to CPL programs, without having to quote them.
The rules for REST arguments are as follows:

• Only one REST argument is permitted in an &ARGS directive.

• The REST argument must be the last argument in the directive.

For example:

&ARGS FILENAME :TREE; OTHER_ARGS:REST

The first argument on the command line must be a filename (or
pathname). Everything that follows the filename becomes the value of
GTHERJ\RGS.

Second Edition 6-6

TYPE-CHECKING AND DEFAULT

A Sample Program

A sample program us ing t h e d i r e c t i v e shown above might spool a f i l e on
a p a r t i c u l a r p r i n t e r , g iv ing t h e user t h e choice of spec i fy ing
a d d i t i o n a l o p t i o n s a t run t i m e :

/*Usage R SPL f i lename o the r_a rgs
&ARGS FILENAME:TREE; OTHER_ARGS:REST
SPOCL %FILENAME% -AT CAROUSEL %OTHER_JARGS%

Here a r e some sample t e r m i n a l s e s s i o n s :

OK, R SPL Xl.CPL
[SPOCL rev 18 .0]
PRT003 spooled , r e c o r d s : 1 , name:Xl.CPL
OK, R SPL Xl.CPL -FORM NOW -LIST
[SPOOL rev 18 .0]
PRT004 spooled , r e c o r d s : 1, name:Xl.CPL

user p r t t ime name s i z e o p t s / # form defer a t : CAROUSEL

QA.TST

NOW

SMITH
JONES
BROWN
BROWN
OK,

001
002
003
004

0:20
2:33

13:22
13:23

MEMO. 41
CL-DEPT.O
Xl.CPL
Xl.CPL

14
6
1
1

Defaul t Values for REST Arguments

Like any o the r type of argument, a REST argument can be g iven a d e f a u l t
v a l u e . For example:

&ARGS FILENAME: TREE; OTHER_ARGS: REST= -LIST
SPOOL %FILENAME% -AT CAROUSEL %OTflER_JVRGS%

A t e rmina l s e s s i o n wi th t h i s program might look l i k e t h i s :

OK, R SPL2 Xl.CPL
[SPOOL rev 18 .0]
PRT003 spooled , r e c o r d s : 1 , name:Xl.CPL

user p r t t ime name s i z e o p t s / # form defe r a t : CAROUSEL

SMITH 001 0:20 MEMO.41 14
JONES 002 2:33 CL-DEPT.O 6 QA.TST
BROWN 003 13:27 Xl.CPL 1
OK,

6-7 Second E d i t i o n

7
Processing Groups

of Files

GROUPING FILES AND DIRECTORIES

CPL and PRIMOS have several methods for providing easy access t o groups
of f i l e s and d i r e c t o r i e s :

• Prime's file-naming conventions help you s e t up your directory
so t h a t you can see eas i ly what types of f i l e s i t contains .

• Prime's wildcard f a c i l i t y l e t s you access groups of s imilar ly
named f i l e s (or d i rec tor ies) within a d i rec tory .

• CPL functions and loops take advantage of wildcards and naming
conventions t o l e t you perform operations on specified groups of
f i l e s or d i r e c t o r i e s .

This chapter explains each of these topics , in tu rn .

FILENAME CONVENTIONS

Prime's filename conventions use suffixes to identify various so r t s of
f i l e s . Using these conventions, a filename i s divided in to two
components: the base name and the suffix. A dot separates the
components.

(There may be any number of components in a filename, separated by
dots . However, only the f inal component i s considered to be the
suffix. Names with more than three components a re not recommended.)

7-1 Second Edition

DOC4302-190

USING SUFFIXES: THE BEFORE AND AFTER FUNCTIONS

CPL's BEFORE and AFTER functions make i t easy to break a filename in to
i t s separate components. Thus, the name of a source f i l e can be
separated in to "filename" and "compiler name", dropping the dot in the
process.

The BEFORE Function

The form of the BEFORE function i s :

[BEFORE s t r i n g - l s t r ing-2]

The BEFORE function returns tha t part of s t r i n g - l which occurs before
s t r i n g - 2 . For example,

[BEFORE ABCD C]

returns

AB

Hence

&S FILE := [BEFORE SOURCE.PLlG .]

s e t s t h e va lue of FILE t o SOURCE.

If string-2 i s not part of s t r ing- l , the BEFORE function returns the
entire s t r ing- l . For example:

[BEFORE SOURCE .]

returns

SOURCE

If string-2 represents the leftmost characters in s t r ing- l , the BEFORE
function returns the null string.

The AFTER Function

The form of the AFTER function is

[AFTER string-l string-2]

The AFTER function returns as its value that portion of string-l which
occurs after string-2.

Second Edition 7-2

PROCESSING GROUPS OF FILES

For example,

[AFTER ABCD C]

returns

D

Hence,

&S COMPILER := [AFTER SOURCE. PllG .]

s e t s the value of COMPILER to PL1G.

If s t r ing-2 i s not par t of s t r i n g - 1 , or if s t r ing-2 represents the
rightmost characters in s t r i n g - 1 , the AFTER function re turns the nu l l
s t r ing . For example:

[AFTER SOURCE .]

re turns

An Example

Here i s an example of these functions in act ion. The CPL program shown
below compiles, loads, and runs any 64-V mode program, using the
filename as i t s argument.

(This program, named CLR_ALL, i s a revision of the "compile, load, and
run" program shown in Chapter 2.)

/ * CPL program t o compile, load and
/ * execute any -64V mode program
/ * Usage: R CLR_ALL filename
/ *

&ARGS FILENAME; OPTION_LIST:REST
&S COMPILER := [AFTER %FILENAME% .]
&S SOURCE := [BEFORE %FILENAME% .]

/ *
/ * Check for compiler suffix

&IF [NULL %COMPILER%] ~
&THEN &SETJVAR COMPILER := [RESPONSE 'Please specify compiler']
/ * compile the program
%GOMPILER% %FILENAME% -64V -B %SCURCE%.BIN %OPT3DN_LIST%

/ *
&DATA SEG -LOAD / * SEG names output f i l e source.SEG

LOAD %SOURCE% / * SEG finds f i l e source.BIN
LI VCOBLB
LI PL1GLB
LI VPORMS

7-3 Second Edition

DOC4302-190

LI VAPELB
LI VSSRTLI
LI
SA
QU

&END
/ *

SBG %source% / * execu te r u n f i l e
&RETURN

WILDCARDS

Wildcards allow you t o specify groups of f i l e s using a s ingle wildcard
name. A wildcard name i s a f i l e or directory name in which one or more
characters have been replaced by one or more wild characters . A wild
character may represent any other character (or charac te rs) , according
t o the rules shown in Table 7 - 1 . A number of examples follow.

Some Examples

Assume a d i rec tory , MYUFD, tha t contains the following f i l e s :

FOO. COBOL BARRL. COBOL BARR1. SEG
BARR2.COBOL BARR2.SEG FOO.SEG
CLR.CPL FDD.CPL SCROLL
EDD.COMO EDD.COMO. OLD

The wi ldca rd name FOO. @ matches a l l two-component names w i t h i n MYUFD
than begin with FOO.:

FOO.COBOL FOO.SEG

The wi ldca rd name @.SEG matches a l l two-component names t h a t end wi th
.SEG:

BARR1.SEG BARR2.SEG FOO.SEG

The wi ldca rd name BARR+.COBOL matches

BARKL. COBOL BARR2. COBOL

The wi ldca rd name BARR+.@ matches

BARRl.COBOL BARR2.COBOL
BARR1.SEG BARR2.SEG

The wildcard name EDD.@ matches:

EDD.CPL EDD.COMO

Second E d i t i o n 7-4

PROCESSING GROUPS OF FILES

Table 7-1
Wild Characters

Character

@

@<§

+

A

Function

Replaces any number of characters within
one component of a filename or directory
name. Stops matching at the dot (.) that
separates a name and its suffix.

Replaces any number of characters in any
number of components within a file or
directory name.

Replaces a single character.

Negation character. The negation
character must be the first character in
the wildcard name. A wildcard name that
begins with " matches all names that don't
match the rest of the wildcard name.

7-5 Second Edition

DOC4302-190

I t does no t match EDD. COMO.OLD, because t h e s i n g l e @ cannot c r o s s t h e
do t (.) t o match t h e s u f f i x , OLD.

The w i l d c a r d name ED@@ matches:

EDD. CPL EDD. OOMO EDD. COMO. OLD

The w i ldca rd name @@L matches a l l names t h a t end with L:

FOO.CDBCL
CLR.CPL

BARR1. COBOL
EDD.CPL

BARR2.COBCL
SCROLL

The w i ldca rd name @L matches a l l one-component names t h a t end i n L:

SCROLL

The wildcard name (̂a.CPL matches a l l f i l e s in the di rectory t ha t do not
end with .CPL, or t ha t do not have two components:

FOO.COBOL
POO.SEG
SCRCLL

BARR1. COBOL
BARR2. COBOL
EDD. COMO

BARR1.SEG
BARR2.SEG
EDD. COMO. OLD

The wi ldca rd name @@ matches a l l names i n t h e d i r e c t o r y , r e g a r d l e s s of
t h e number of components they c o n t a i n :

FOO. COBOL
BARR2. COBOL
CLR.CPL
EDD.COMO

BARR1.COBCL
BARR2.SEG
EDD.CPL
EDD.COMO.OLD

BARR1.SEG
FOO.SEG
SCROLL

TOE WILD FUNCTION

CPL's WILD function produces a l i s t of a l l names within a directory
tha t match one or more wildcard names. I t has two forms, discussed
below. The f i r s t form returns a l l matching names a t once, in a s ingle
l i s t . Names within the l i s t are separated by blanks. The second form,
which uses the -SINGLE option, returns one matching name per invocation
un t i l the l i s t of names i s exhausted.

The reason for the two forms of the WILD function i s t ha t the l i s t
produced by the WILD function i s l imited to 1024 characters . If a
longer l i s t i s produced, an error occurs which aborts the CPL program.
Since the -SINGLE option only returns one name a t a time, i t can handle
cases which would produce over-long l i s t s .

Second Edition 7-6

PROCESSING GROUPS OF FILES

Basic Format of the WILD Function

•Hie basic format of the WILD function i s :

[WILD wild-name-l {...wild-name-n} {options}]

wild-name-l through wild-name-n are wildcard names which the WILD
function w i l l match. If wild-name-l i s a pathname, a l l the wild-names
are looked for in the di rectory tha t wild-name-l spec i f i e s . Otherwise,
a l l names are searched for in the current d i rec tory . (Wild-name-2
through wild-name-n may not be pathnames.) For example:

ATTACH MYUFD
&SETVAR SOURCES := [WILD @.COBOL @.PMA]

creates a l i s t of a l l COBOL and PMA source f i l e s in MYUFD, and s tores
the l i s t in the va r iab le , SOURCES.

ATTACH JONES
&SETVAR SOURCES := [WILD SMITH >@. COBCL @.PMA]

creates and s tores a l i s t of a l l COBOL and PMA source f i l e s in the
directory SMITH.

options represent one or more optional option arguments. These place
l imi t s on the objects matched by the specified wildcard names, options
are as follows:

Option

-ACL

-AFTER date

-BEFORE date

-DIRECTORY

H[ILE

-SEGMENT DIRECTORY

Meaning

Select only ACLs.

Select only objects created or modified
af ter the date specified by date . (This
information i s s tored as the f i l e ' s DTM,
"date and time modified." I t s format i s
mo/da/yr.)

Select only objects created or
modified before the specif ied da te .

Select only d i r ec to r i e s .

Select only f i l e s .

Select only segment d i r e c t o r i e s .

l a s t

119.0

19.0

7-7 Second Edition

19.0

DOC4302-190

Some examples using options are as follows:

• SETVAR .OBJ := [WILD @@ -SEGDIR]

creates a l i s t containing the names of a l l segment d i r ec to r i e s in the
current d i rec tory . For example:

SETVAR .OBJ := [WILD @@ -SEGDIR]
TYPE %.OBJ%
FOO.SEG BAR.SEG

^ SETVAR .OBJ := [WILD @.PL1G -BF 05/30/80]

l i s t s a l l PL/If Subset G, source f i l e s created or l a s t modified before
May 30, 1980. For example:

SET_VAR .OBJ := [WILD @.PL1G -BF 05/30/80]
TYPE %.OBJ%
FOO.PL1G

• SET_VAR .OBJ := [WILD MYUFD>@@ -DIR]

l i s t s a l l subdirectories in the UFD, MYUFD. For example:

SETVAR .OBJ := [WILD MYUFD>@@ -DIR]
TYPE %.OBJ%
REPORTS MEMOS OTflERjSTtJFF

The -SINGLE Option

The -SINGLE option causes the WILD function t o return object names one
a t a time, rather than writ ing them in to a l i s t . Use i t when you think
tha t WILD's l i s t might overrun i t s l imi t of 1024 characters or when
i t ' s more convenient t o deal with the f i l e names one a t a time.

The format of t h i s version of the WILD function i s :

[WILD wild-path {wild-2 . . . wild-n) {options} -SINGLE uni t -var]

options a re the same as those for the pla in WILD function.

unit-var i s a variable-name in which WILD puts the number of the f i l e
uni t i t has used t o open the directory to search for objects , uni t -var
must be se t to zero before WILD i s invoked, so tha t WILD can
dis t inguish the f i r s t c a l l (in which i t opens the uni t and re turns the
f i r s t matching name) from subsequent c a l l s (in which i t takes the next

Second Edition 7-8

PROCESSING GROUPS OF FILES

name from the open unit). An example of the use of the WILD function
with the -SINGLE option follows:

&SET_VAR UN := 0
&SET_VAR ONE_̂NAME := [WILD @.LIST -SINGLE UN]

The f i r s t d i rec t ive defines the var iable UN and s e t s i t t o zero. The
second causes CPL t o :

1. Open the current d i rectory on some ava i lab le u n i t .

2 . Change the value of UN to the number of the f i l e uni t used.

3 . Find the f i r s t l i s t i n g f i l e in the d i rec tory .

4 . Set the value of the var iab le ONE_JNAME t o the name of the f i r s t
l i s t i n g f i l e in the d i rec tory .

Subsequent invocations of the same function c a l l return the second
l i s t i n g f i l e , the t h i r d l i s t i n g f i l e , and so on, un t i l the re are no
more l i s t i n g f i l e s t o be found. Then WILD re turns a t rue nul l s t r i n g ,
and closes the di rectory f i l e un i t .

USING THE WILD FUNCTION IN LOOPS

Why would you want t o produce a l i s t of f i l e or d i rec tory names? One
reason would be t h a t you want t o do something with each of the f i l e s or
d i rec to r ies on the l i s t , for example, spool a l l your runoff f i l e s ,
obtain a l i s t i n g of the contents of each of your subdi rec tor ies , update
a group of reports or data f i l e s .

Tasks l i k e these can be achieved eas i ly by using the WILD function t o
control a loop, thus performing the desired process once for each item
on the l i s t .

CPL Loops

CPL offers a variety of loops, which are discussed in detail in Chapter
9. Among these loops are two that work most efficiently with the WILD
function: the &D0 &LIST loop and the &D0 &ITEMS loop. The &D0 &LIST
loop is used when the WILD function is used to get the entire list of
file or directory names at one time. The &D0 &ITEMS loop is used with
WILD's -SINGLE option. An example of each of these types of loop is
shown here, to demonstrate its use with the WILD function. Full
explanations are given in Chapter 9.

7-9 Second Edition

DOC4302-190

Example of &D0 &LIST Loop

The fo l lowing program s p o o l s a l l runoff f i l e s (ending i n .PONO) i n any
d i r e c t o r y s p e c i f i e d by the u s e r :

&ARGS PA1H
/ * Specify d i r e c t o r y
&DO X &LIST [WILD %PATH%>@.HJNO -FILES]

SPOOL %PArIH%>%X% / * Spool each f i l e i n t u r n
&END /*End loop
&RETURN / * End program

Example of &D0 & ITEMS Loop

If you had many runoff f i l e s i n your d i r e c t o r y , you could w r i t e t h e
same program with a &D0 &ITEMS loop , as f o l l o w s :

&ARGS PATH
&SET_VAR UNIT := 0 / * I n i t i a l i z e v a r i a b l e for f i l e u n i t
&D0 X &ITEMS [WILD %PATH%>@.HJN0 -FILES -SINGLE UNIT]

SPOOL %X%
&END
&RETURN

For f u r t h e r examples of loops using t h e WILD func t i on , s e e Chapter 9 ,
LOOPS IN CPL.

Second Ed i t i on 7-10

8
Decision-making

in GPL Programs

CONTROL DIRECTIVES

Among the most powerful features of CPL are its "flow of control"
directives. These are the statements by which users specify what tests
they want performed at run-time and what actions they want taken
depending on the result of those tests. Table 8-1 shows the flow of
control directives offered by CPL.

&IF...&THEN...&ELSE, &GOTO, and &D0 groups are explained in Chapter 2.
Nested &IF statements and &SELECT statements are discussed in this
chapter. &D0 loops are discussed in Chapter 9.

SINGLE &IF STATEMENTS

A single &IF...&THEN...&ELSE statement can choose between any two
alternatives. For example:

&IF %A% > 10 &THEN SEG MYFILE
&ELSE SEG HISFILE

Multiple expressions can be combined into a single test by the use of
the logical M D (&) and inclusive OR (I). When logical AND is used,
both expressions must be true for the test to be true. With logical
OR, on the other hand, if either expression (or both) is true, the test
is true.

8-1 Second Edition

DOC4302-190

Table 8-1
Flow-of-Control Directives

Directive

&IF...&THEN...&ELSE

&SELBCT

&DO g r o u p

&DO l o o p

&GOTO

Action

Chooses between two a l t e rna t ive s . &IF
statements may be nested t o allow
further decisions to be made on the
basis of the former decis ions.

Chooses among any number of
a l t e rna t ives .

Allows a group of statements t o be
t rea ted logical ly as i f i t was a s ingle
statement.

Allows a group of statements t o be
executed:

• n times, with n as a p re - se t number.

• n times, with n computed a t run-time.

• while some logica l expression i s t rue
(or f a l s e) .

• unt i l some logica l expression becomes
true (or f a l s e) .

• un t i l a l i s t of items i s exhausted.

Allows a rb i t ra ry t ransfer of control
from one place within a program t o
another.

Second Edition 8-2

DECISION-MAKING

For example:

&IF %A% > 10 & %B% > 10 ~
&THEN SEG MYFILE
&ELSE SEG HISFILE

In t h i s example, MYFILE w i l l no t be executed u n l e s s both A and B have
va lues t h a t a r e g r e a t e r than 10 .

&IF %A% > 10 I %B% > 10 ~
WHEN SEG MYFILE
&ELSE SEG HISFILE

In t h i s example, MYFILE w i l l be executed i f t h e va lue of e i t h e r (or
both) A or B exceeds 1 0 .

A Sample Program

The fo l lowing CPL program uses l o g i c a l ANDs and ORs t o dec ide which
p a y r o l l program t o run . If t h e program i s run on March 3 1 , June 30 ,
September 30 , or December 3 1 , i t gene ra t e s a q u a r t e r l y r e p o r t . I f t h e
program i s run on December 3 1 , i t a l s o runs t h e y e a r l y W-2 program. I t
always runs a s t anda rd p a y r o l l program. (For d e t a i l s on t h e DATE
func t ion , used by t h i s program, see Chapter 12.)

&SETVAR MONTH := [DATE -MONTH]
&SETVAR DAY := [DATE -DAY]
/ * IF THIS IS THE END OF THE QUARTER, THEN RJN THE 941 REPORT
&IF (((%DAY% = 31) **

& ((%MONTH% = torch) | (%MONTH% = December))) ~
I ((%DAY% = 30) ~
& ((%MONTH% = June) I (%M0NTH% = September)))) ~

&THEN SEG PGM941
/* IF THIS IS THE END OF THE YEAR, THEN RJN THE W-2 PROGRAM
&IF ((%DAY% = 31) & (%M0NTH% = December)) ~

&THEN SEG W2FORM
/* ALWAYS RUN THE PAYROLL PROGRAM
SEG PAYROLL

NESTED &IF STATEMENTS

If you need to choose among three or more alternatives, you may use
either a &SELECT statement or nested &IF statements. Nested &IF
statements use another &IF statement as the argument to the &THEN
statement, the &ELSE statement, or both. For example:

&IF %A% > 10 &THEN SEG MYFILE
&ELSE &IF %A% = 10 &THEN SEG HISFILE
&ELSE SEG HERFILE

8-3 Second Edition

DOC4302-190

In this example, MYFILE will be executed if the value of A is greater
than 10; HISFILE will be executed if the value of A is equal to 10;
and HERFILE will be executed if the value of A is less than 10. (Note
that each &ELSE statement matches, or depends on, the &THEN statement
immediately preceding it.) There is no limit to the number of &IF
statements which can be nested in this manner. Here is another
example, from the field of education:

&IF %AVERAGE% > 89 &THEN &S GRADE := A
&ELSE &IF %AVERAGE% > 79 &THEN &S GRADE := B
&ELSE &IF %AVERAGE% > 69 &THEN &S GRADE := C
&ELSE &IF %AVERAGE% > 59 WHEN &S GRADE := D
&ELSE &S GRADE := F

More Nested &IF Statements

A more complex form of nested &IF statement is one in which both &IF
and &ELSE statements are nested. With this construction, the rule for
matching WHEN and &ELSE statements is: An &ELSE statement matches the
last WHEN statement preceding it that is not already matched by an
&ELSE statement. Examples of such matching are shown in Figure 8-1.

o n - 1 , &THEIM true-action-1
et lFtest-1 < „ . . . „ . - , , ^ -

&ELSE false-action-1

&THEN & l F test-2 I & T H E N true-action-2
„ , , . . (&ELSEfalse-action-2
&IFtest -1 \

/ &ELSE false-action-1

&THEN true-action-1

& IF test-1
I O C I O C P I C * * o I &THEN true action-2 (&ELSE & IF test-2

&ELSE false-action-2

Matching of &THEN and &ELSE Statements
Figure 8-1

Second Edition 8-4

DECISION-MAKING

Here i s an example of t h i s so r t of construct ion:

&IF %A% > 50 ~
&THEN ~
&IF %B% > 50 ~
&THEN RESUME
&ELSE RESUME

&ELSE ~
&IF %C% > 10 ~

&THEN RESUME

MAXIMUM
MAJOR

MINOR
&ELSE RESUME MINIMUM

/ * l s t &IF t e s t s value of A
/*take t h i s path i f A > 50
/*nested &IF t e s t s value of B
/*A and B both > 50
/*A > 50, B <= 50
/* take t h i s path i f A <= 50
/•another 2nd leve l t e s t
/*A <= 50, C > 10
/*A <= 50, C <= 10

The decisions made by t h i s example are diagrammed in Figure 8-2.
Notice how the decision l eve l s shown in t h i s f igure are ref lec ted in
the indentation of the example. Such indentat ions help you remember
which &THEN and &ELSE pa i r goes with each &IF.

YES

A > 50?

NO

B > 50?

YES

RESUME
MAXIMUM

C > 10?

NO YES

RESUME
MAJOR

NO

RESUME
MINOR

RESUME
MINIMUM

Diagram of Nested &IF Statement
Figure 8-2

Second Edition

DOC4302-190

THE &SELECT DIRECTIVE

Since CPL &IF di rec t ives can be nested, they can handle any s i t ua t ion
in which you need t o t e s t a t run time and then take act ion based on the
r e su l t of t ha t t e s t . However, deeply nested &IF statements, as well as
&IF statements containing logical OR's, are often d i f f i c u l t t o read.
When you want t o choose between several a l t e rna t ives , therefore , you
may prefer t o use the &SELECT di rec t ive t o provide a neatly s e t out
grouping of a t e s t condition, i t s possible r e s u l t s , and the act ion t o
be taken in every case. Figures 8-3 and 8-4 compare the nested &IF
statement and the &SELECT statement.

&SELECT Directive Format

The form of the &SELECT di rec t ive i s as follows:

&SELECT key-expression
£WHEN expression-Al {,expression-A2...,expression-An}

action-A
WHEN expression-Bl {,expression-B2...,expression-Bn}

action-B

{&OTHEMISE
action-n}

&END

key-expression may be a var iable reference, a function c a l l , or a
s t r i ng , ar i thmetic , or Boolean expression. For example:

&SELECT %COMPILER%
&SELECT %A% + %B%
&SELECT [DATE -DOW]

expressions-1 through n represent possible values of key-expression.
In the example, "&SELECT %G0MPILER%", a l l further expressions would
represent possible values of the var iab le , %COMPILER%. In the example
"&SELECT [DATE -DOW]", a l l further expressions would represent the
possible r e su l t s returned ty the DATE function. In the example,
"&SELECT %A% + %B%", a l l further expressions would be in tegers or
ar i thmetic expressions representing possible values of the sum of the
current values of A + B.

Action-A through action-n may be any type of CPL statement: for
example, a PRINDS command, a CPL d i rec t ive , a &DO group, or a &DATA
group.

Second Edition 8-6

DECISION-MAKING

Actions Taken by the &SELECT Directive

When the CPL in te rp re te r reads an &SELECT d i r ec t i ve , i t takes the
following ac t ions :

1 . I t evaluates key-expression.

2 . I t searches through the &WHEN di rec t ives un t i l i t finds an
expression t h a t i s equal t o key-expression.

3 . When i t finds a match, i t executes the statement immediately
following t h a t &WHEN d i rec t ive .

4 . As soon as i t has found t ha t f i r s t match and executed the
accompanying statement, i t drops t o the &END statement t h a t
concludes the &SELECT group, and continues execution with the
following statement.

5 . If i t finds no match, but does find an &OTHEIWISE d i r ec t i ve , i t
executes the statement immediately following the &OTHEEWISE
d i r ec t ive .

6. If i t f inds nei ther a match nor an &OTHEMISE d i r ec t ive , i t
executes none of the &SELECT group's statements, but continues
reading the CPL f i l e a t the statement following the &SELECT
group's &END statement.

Using Variable References

A var iable reference used in a &SELECT statement evaluates t o a s ingle
expression. For example, assume tha t var iable A has the value "5 , 10,
15", and t h a t i t i s used in a &SELECT statement beginning:

&SELECT %B%
&WHEN %A%, 20, 25

This statement t e s t s the value of B three t imes: once against the
character s t r i ng "5 , 10, 15", once against the integer value "20", and
once against the integer "25." I t does NOT t e s t for the in tegers 5 ,
10, or 15. If the value of B i s 20, the SWHEN t e s t i s TPUE; i f the
value of B i s 10, the &WHEN t e s t i s FALSE.

8-7 Second Edition

DOC4302-190

A=10?
YES

action-1

NO

A=20?
YES

action-2

NO

A=30?
YES

action-3

NO

YES
A=40? action-4

NO

action-6
NO

A=50?
YES

action-5

&IF %A% = 10 &THEN a c t i o n - 1
&ELSE &IF %A% = 20 &THEN a c t i o n - 2

5.ELSE &IF %A% = 30 &THEN a c t i o n - 3
&ELSE &IF %A% = 40 &THEN a c t i o n - 4

&ELSE &IF %A% = 50 &THEN a c t i o n - 5
&ELSE a c t i o n - 6

Nested &IF Statement
Figure 8-3

Second Edition 8-8

DECISION-MAKING

< ~ >

10

action-1

20

action-2

30

action-3

40

action-4

50

action-5

other

action-6

&SELECT %A%
&WHEN 10

action-1
&WHEN 20

action-2
&WHEN 30

action-3
&WHEN 40

action-4
&WHEN 50

action-5
&OTHERWISE

action-6
&END

The &SELECT Statement
Figure 8-4

8-9 Second Edition

DOC4302-190

&SELECT Examples

The f i r s t example demonstrates t h e use of m u l t i p l e e x p r e s s i o n s i n &WHEN
s t a t e m e n t s . In t h i s example, t he &SELECT s t a t emen t adds t h e v a l u e s of
A and B, then matches t h e sum aga ins t t h e s p e c i f i e d i n t e g e r s .

&ARGS A:DEC; B:DEC
&SELECT %A% + %B%

&WHEN 10, 20 , 30 , 40 , 50
RESUME RAND1

&WHEN 5 , 1 5 , 2 5 , 3 5 , 45
RESUME RAND2

&WHEN 60 , 70 , 80, 90 , 100
RESUME RAND3

&WHEN 5 5 , 6 5 , 7 5 , 8 5 , 95
RESUME RAND4

&OIHERWISE
RESUME RAND5

&END

A second example a p p l i e s t h e &SELECT s t a t emen t t o t h e academic problem
of turning s tudents ' numeric averages in to l e t t e r grades. I t uses
Boolean expressions for i t s t e s t s . Each Boolean expression produces a
value of e i ther TRUE or FALSE. The f i r s t TRUE expression thus equals
the key-expression, TRUE, and ends the search.

&ARGS AV
&SELECT TRUE
&WHEN %AV% <= 60
&S GRADE := F
&WHEN %AV% <= 70
&S GRADE := D
&WHEN %AV% <= 80
&S GRADE := C
&WHEN %AV% <= 90
&S GRADE := B
&OTHERWISE
&S GRADE := A

&END

The third example, EDDD.CPL, invokes the EDITOR and sets editor symbols
in accordance with the language in which the source file is being
written. It takes one argument, which may be

• The name of the file to be edited

• The name of a compiler or language: COBOL, CPL, FIN, F77, PL1G,
or RPG

If the argument is supplied, EDDD.CPL decides whether the user wants to
edit an existing or create a new file in the specified language. If
the argument is omitted, EDDD.CPL assumes that an ASCII file is to be
created (that is, a data file, a report or memo, etc.).

Second Edition 8-10

DECISION-MAKING

EDDD.CPL is a variant of EDD.CPL, which was shown in Chapter 2.

/* EDDD.CPL is a fancier variant of EDD.CPL
/*
&args name
&set_var empty_line :=
Sselect %name% / * I s name a filename or a compiler name

&when FTN, F77, PL1G, COBOL, CPL, RPG
&do

&s language := %name%
&s name :=
&s input_mode := t rue
Send

Sotherwise
&do

&if [null %name%] &then &do
&s input_mode := t rue
&s language := ASCII
Send

Seise &s input_mode := false
&end

Send / * end se lec t
/ *
/ * If we've got a genuine filename, check for compiler suffix
/ *
&if A %input_mode% &then

&if [index %name% .] "= 0 &then ~
&s language := [after %name% .]
&else &s language := ASCII

/ *
/* enter editor
/*
Sdata ed %name%

&if %input_mode% &then %empty_line%
&select %language%

&when PIN, F77
TABSET 7 45

&when PL1G, CPL
&D0

TABSET 3 6 9 12 15 18 21 24
SYMBOL SEMICO }
&END

&when COBOL
&D0

MODE COLUMN
TABSET 7 45
&END

&when RPG
MODE COLUMN

Sotherwise /* set characteristics for report writing
&D0

SYMBOL SEMICO }
TABSET 5 10 15 20 25 30
&END

8-11 Second Edition

DOC4302-190

&END / * end &select
&IF %input_mode% &THEN %empty_line% / * re turn t o input mode
&TTY / * give user control
&END /* end &data group
&RETORN

Some sample sessions using t h i s program mic^ht be :

/ * Th is example s e t s Edi tor c h a r a c t e r i s t i c s for s t a n d a r d r e p o r t g e n e r a t i o n .
OK, R EDDD
INPUT

EDIT

INPUT
type in

EDIT
f i l e i f

SYMBOL
TABSET

SEMICO }
5 10 15

vrtiatever you want

20 25 30

OK,

/* This example sets Editor characteristics for an RPG program.
OK, R EDDD RPG
INPUT

EDIT
MODE COLUMN

INPUT
1 2 3 4 5 6 7

1234567890123456789012345678901234567890123456789012345678901234567890123456789

EDIT
Q
OK,

/ * This example s e t s Ed i to r c h a r a c t e r i s t i c s for a PL1G program.
OK, R EDDD SOMETHING.PL1G
EDIT

TABSET 3 6 9 12 15 18 21 24
SYMBOL SEMICO }

£3
.NULL.
/ * t h i s i s a sample PL/I program
DCL A FIXED BIN
q
OK,

Second Edition 8-12

DECISION-MAKING

The f i n a l example uses a &SELECT group i n s i d e a MAGSAV r o u t i n e ,
s e l e c t i n g on t h e DATE f u n c t i o n ' s DAY-OF-WEEK o p t i o n t o p i ck t h e
d i r e c t o r i e s t o be backed up on t a p e .

/*
/*Assign a tape drive and
/*have operator mount a tape
/*
ASSIGN MTX -ALIAS MTO - T P I D BACKUP.NEW -RTNGON - 1 6 0 0 B P I
&DATA MAGSAV
0 /*Response t o "Tape Un i t " prompt
1 /*Response t o "Enter l o g i c a l t ape number"
BACKUP.[DATE -TAG] /*Response t o "Tape" prompt
[DATE -USA] /*Response t o "Date" prompt
0 /*Response t o "rev n o : " prompt

/*&SELECT i s now used t o respond t o
/*"NAME OR COMMAND" prompts

&SELECT [DATE -DOW]
&WHEN Monday, Wednesday /*DATE r e t u r n s day of week

&D0 / * i n upper and lower case format
UFD1 /*Back up t h e s e UFD's
UFD2>SUBUFD1 /*on Monday and
UFD3 /^Wednesday

&END
&WHEN Tuesday, Thursday

&D0
UFD2>SUBUFD2 /*Back up t h e s e UFD's
UFD4 /*on Tuesday and Thursday
UFD5

&OTHERWISE
MFD , /*Back up t h e whole MFD on Fr iday

SEND /*End &SELECT
/*Now t e l l MAGSAV t o f i n i s h t a p e , rewind,
/*and r e t u r n t o PRIMDS
$R
&END / * E n d &DATA g r o u p
/*Unassign t h e t a p e d r i v e

UNASSIGN -ALIAS MTO
&RETURN

8-13 Second E d i t i o n

9
Loops in GPL

USING LOOPS

Loops are useful when you want some operation (or operations) to be
carried out repeatedly, with (or without) minor variations: for
example, when you want many source files compiled or spooled, or many
lines in a data file updated.

CPL provides a wide variety of loops. This chapter contains:

• An overview of the sorts of loops CPL provides, the format of
loops in general, and the behavior of loops in general.

• A detailed explanation of how to use each kind of loop CPL
provides.

OVERVIEW

CPL provides the following so r t s of loops:

• The "counted" l o o p :
for example, &D0 I := 1 &T0 100 &BY 5

• The "&DO SWHILE" l o o p :
for example, &DO &WHILE %J% <= 100

• The "&DO &QNTIL" l o o p :
for example, &DO &UNTIL %J% > 100

9-1 Second Edition

DOC4302-190

• The "counted" loop combined with a "while" or "un t i l " t e s t :
for example, &DO I := 1 &T0 100 SWHILE %J% > 20

• The "&REPEAT" loop, which i s usually combined with a "while" or
"unt i l " t e s t :
for example, &DO I := 50 &REPEAT %I% * %I% SWHILE %I% <= 100000

• The "&LIST" loop
for example, SDO I SLIST %var_list%

or SDO I SLKT 5 36 489

• The "LITEMS" loop, a var iant of the "SLIST" loop:
for example, &DO I SITEMS [WILD @.FIN -SINGLE UNIT]

Loop Formats

All loops have the same basic format:

&DO {index-var} loop-instruct ions
statement-1
statement-2

statement-n
&END

index-var i s any val id variable name. I t may not be an expression.
The use of an index-var i s required in a l l loops except the "&DO
SWHILE" and "SDO &UNTIL,r loops.

loop-instructions contain:

• A s t a r t i n g value for index-var (if index-var i s used)

• A method for incrementing index-var (if index-var i s used)

• One or more t e s t s for loop completion

The presence of index-var and loop-inst ruct ions dis t inguish the
i t e r a t i v e SDO loop from -the simple &DO group. When the CPL in te rp re te r
reads the word SDO, i t checks for index-var and loop- ins t ruc t ions . If
i t finds ne i ther , i t executes the SDO group once. If i t finds
index-var alone, or if i t finds incorrect i n s t ruc t ions , i t p r i n t s an
error message. If i t finds syntact ica l ly correct loop- ins t ruc t ions , i t
prepares t o execute the loop from zero t o an i n f i n i t e number of times,
according t o the ins t ruc t ions .

Second Edition 9-2

LOOPS

Loop Execut ion

When a loop i s encountered i n t h e execu t ion of a CPL program, t h e
following act ions occur. (Figure 9-1 contains the corresponding flow
char t .)

1. If index-var i s present , i t i s s e t t o i t s i n i t i a l value. The
value i s t e s t ed for loop completion.

2 . If a SWHHJ3 clause i s present, i t i s t e s ted for loop
completion.

3 . If the loop has not ye t been completed, statement-1 through
statement-n a re executed.

4 . When the &END statement t h a t closes the loop i s reached, the
&UNTIL clause (if there i s one) i s t e s t ed . If i t t e s t s out
TRUE, the loop i s complete. Execution continues with the next
statement af te r the loop.

5 . If no &UNTIL clause i s t r ue , execution re turns t o the top of
the loop.

6. index-var i s s e t t o i t s next value.

7. Tests for index-var and/or SWHILE clauses a re made.

8. If t e s t s a re not TRUE, statement-1 through statement-n are
executed again.

9. And so on, un t i l some t e s t for completion (or some &GOTO or
&RETURN statement inside the loop) s tops execution of the loop.
If no t e s t (or direct ive) ever stops the loop, the loop
executes "forever"—that i s , un t i l the user h i t s CONTROL-P or
the BREAK key, or u n t i l someone forcibly terminates or logs out
the CPL process.

When a loop terminates, index-var re ta ins the l a s t value i t reached
during execution of the loop. In a counted loop, t h i s w i l l be the
f i r s t out-of-range value reached. For example, i f a loop said "&D0 I
:= 1 &TO 10", the value of index-var a t termination would be 1 1 . When
&DO &LIST and &DO &ITEMS loops terminate, t he i r index-vars a r e n u l l .

If a loop i s ha l ted by execution of a &GOTO, index-var r e t a in s whatever
value i t had when the &GOTO was executed.

9-3 Second Edition

DOC4302-190

C ENTER LOOP

)

SET INDEX-VAR
TO INITIAL/NEXT
VALUE

ps-
EXIT ^
LOOP J

.^"^VALUE O F ^ X ^
X^INDEX-VAR LESS
S VTHAN STOP-VALUE^,

V N0

. ^ ^ V A L U E O F S * .
" ^ ^HNDEX-VAR GREATER*^
• ^ ^ S ^ T H A N STOP-VALUER^

NO

T
EXECUTE LOOP

v

^

r EX,T ^
V LOOP J

Plow of Control in GPL Loops
Figure 9-1

Second Edition 9-4

LOOPS

Note

You may write a &GOTO that exits from a loop, going from a
point inside the loop to a point outside it. You may NOT use a
&GOTO to enter a loop: that is, you may not &GOTO a point
inside a loop from any point outside the loop. (If you write
such a &GOTO into a CPL program, you will get an error message
from the interpreter when you try to execute the program.)
Figures 9-2 and 9-3 show examples of legal and illegal uses of
&GOTO.

Nested Loops

r.oops in CPL may be nested: that is, one loop may be written inside
another. A trivial example, called NEST.CPL, is:

&D0 A := 10 &TO 30 &BY 10 /* Start outer loop
TYPE %A%
&DO B := 1 &TO 3 /* Start inner loop

TYPE %B%
&END /* End inner loop

&END /* End outer loop

When loops are nested, the outer loop begins executing first. When it
reaches the inner loop, the inner loop executes until it's completed.
Then the outer loop continues executing. The inner loop always ends
first. Loops cannot overlap; the inner loop is always completely
enclosed in the outer loop.

Each time the outer loop executes, the inner loop is re-initialized,
and executes from start to completion again. When the outer loop does
not execute, the inner loop cannot execute.

Here is what happens when you run NEST,CPL:

OK, resume nest
10
1
2
3
20
1
2
3
30
1
2
3
OK,

Loops may be nested as deeply as you can keep track of them.

9-5 Second Edition

DOC4302-190

&DO I : =
•
*
•
&GOTO
&END

1 &TD 100000

EXIT

•
&LABEL EXIT

•
•
•

&BY 2

Legal Use of &GOTO
Figure 9-2

&GOTO THERE
&D0 I : = 1 SeTO 100000 &BY 2

&LABEL THERE

&END

Illegal Use of &GOTO
Figure 9-3

Second Edition 9-6

LOOPS

COUNTED LOOPS

Counted l oops have t h e format :

&DO index-var := s t a r t - v a l u e &T0 s t o p - v a l u e {&BY increment} {SWHILE
t e s t } {&UNTIL t e s t }

index-var i s any v a l i d v a r i a b l e name, s t a r t - v a l u e and s t o p - v a l u e may
be i n t e g e r s , e x p r e s s i o n s , v a r i a b l e r e f e r e n c e s , or f unc t i on c a l l s . They
must e v a l u a t e t o i n t e g e r s . For example,

&D0 A
&D0 B
&D0 C

= 1 &T0 10
= 3 &T0 %TOTAL%
= 5 &TO [LENGTH %A%]

I f a &BY c l a u s e i s inc luded , increment must a l s o e v a l u a t e t o an
i n t e g e r . I f a &BY c l ause i s n o t inc luded , increment d e f a u l t s t o 1 .
Negat ive increments or l i m i t s may be used: for example, &DO I := 10
&TO -10 &BY - 1 .

Execution of Counted Loops

When a counted loop e x e c u t e s , index-var i s s e t t o s t a r t - v a l u e .
s t a r t - v a l u e i s t e s t e d t o see t h a t i t i s l e s s t han or equal t o
s t o p - v a l u e . I f i t i s , t h e loop e x e c u t e s . When c o n t r o l r e t u r n s t o t h e
t o p of t h e l o o p , t h e v a l u e of index-var i s incremented by increment ,
and r e - t e s t e d . When t h e va lue of index-var exceeds s t o p - v a l u e ,
execut ion p a s s e s t o t h e s t a t emen t fo l lowing t h e l o o p ' s concluding &END
s t a t e m e n t . The flow c h a r t for t h e counted &DO loop i s shown i n F igu re
9 - 4 . As i t shows, counted &DO loops a r e z e r o - t r i p l o o p s : i f t h e
i n i t i a l va lue of index-var i s out of range , t h e l o o p i s n o t executed .

An example of a counted l oop might b e :

&DO I := 1 &TO 3
FTN M0DULE%I% -64V -XREF

SEND

Thi s loop w i l l execu te t h r e e t imes , compil ing t h e programs NDDULEL,
MQDULE2, and MDDULE3.

Omitted &TQ and &BY Clauses

I f you omit t h e &BY c l a u s e i n a counted loop , i t d e f a u l t s t o "&BY 1" .
If you omit t h e &T0 c l a u s e , index-var has no s t o p - v a l u e , but may be
incremented an i n f i n i t e number of t i m e s . (For example, t h e d i r e c t i v e
&D0 I := 1 &BY 1 produces t h i s type of i n f i n i t e l o o p .) Do n o t omit t h e
&T0 c l ause i n a counted loop wi thou t p rov id ing some o t h e r t e s t fo r loop
t e r m i n a t i o n .

9-7 Second Edition

DOC4302-190

^ wo

V Y £s

Action of Counted &DO Loop
Figure 9-4

Second Edition 9-8

LOOPS

The following can be used to test for loop termination:

• A &WHILE clause

• An &UNTIL clause

• A &RETORN directive inside the loop

• A &G0T0 from some point inside the loop to a point outside the
loop

A counted &D0 loop with neither a &T0 nor a &BY clause executes once
and once only. The statement:

&D0 I := 5

would initiate such a loop. More efficient code to do the same thing
would be:

&D0
&SET VAR I := 5

SEND

&D0 SWHILE LOOPS

The form of the &D0 SWHILE statement is:

&D0 SWHILE test

test can be any expression which evaluates to TRUE or FALSE. A TRUE
result of the text allows the loop to execute. A FALSE result
precludes execution.

Some example of &D0 SWHILE statements are:

&D0 SWHILE [LENGTH %STRING%] > 0
SDO SWHILE %B% > 5 & * [NULL %A%]

&D0 SWHILE loops, like counted loops, are zero-trip loops: that is,
they are tested for completion at the top of the loop, and will not
execute at all if the first test shows the loop to have completed.

Since &D0 SWHILE loops are tested at the top of the loop, they require
that any variable they test have some value assigned to it before or
during the execution of the &D0 statement. In the examples above, %A%,
%B% and %STRING% must have been assigned some values before the &D0
statement is executed.

9-9 Second Edition

DOC4302-190

Here i s an example of a &DO SWHILE loop. This loop ed i t s a f i l e t ha t
contains a l i s t of names, adding new names to the end of the f i l e . The
loop executes as long as you type a name af ter each prompt. I t ends
when you type in a carr iage return, and thus s e t LINE to the nu l l
s t r i ng .

&DATA ED NAME_LIST
BOTTOM / * go t o bottom of f i l e

/ * get f i r s t name
&S LINE := [RESPONSE 'Please enter name t o be added']
&D0 &WHILE A [NULL %LINE%]

INSERT %LINE% / * inse r t new l ine in f i l e
/ * get next name

&S LINE := [RESPONSE 'Please enter name to be added']
&END / * end loop

FILE / * f i l e amended l i s t of names
SEND / * end &data group

&DO &UNTIL LOOPS

The form of the &DO &UNTIL loop i s :

&DO &UNTIL t e s t

For example:

&DO &UNTIL %A% > 50
&DO &UNTIL [LENGTH %STRING%] = 0

test is any expression which evaluates to TRUE or FALSE. The loop
executes as long as test remains FALSE.

&DO &UNTIL loops test at the bottom of the loop. Hence, they are
one-trip loops: they will always execute at least one time. A trivial
example follows.

&ARGS STRING
&DO &UNTIL [NULL %STRING%]

/*Isolate first letter in string
&SETVAR LETTER := [SUBSTR %STRING% 1 1]
TYPE %LETTER%
/* Remove letter from string
&SET_VAR STRING := [SUBSTR %STRING% 2]
&END /* End loop

&RETORN

This loop goes through a string letter by letter, removing and printing
one character on each pass. When the last character has been removed,
the string becomes a null string, and the loop is complete. (For more
information on the SUBSTR function, see Chapter 12.)

Second Edition 9-10

LOOPS

LOOPS THAT COMBINE COUNTING, &WHILE, AND &UNTIL TESTS

"Counted" l o o p s , &DO &WHILE t e s t s , and &DO &UNTIL t e s t s may a l l be
combined. Some p o s s i b l e combinat ions a r e :

&D0 DAY := 1 &TO 31 &UNTIL [NULL %RECOPDS%]
&D0 I := 50 &TO 1 &BY - 5 &WHILE %J% > 3
&D0 &WHILE %A% > 100 &UNTIL %B% > 50

These loops execute un t i l any one of t h e i r t e s t s s igna ls completion.
See Figure 9-1 for the t e s t points they can contain.

&REPEAT LOOPS

The form of the &REPEAT loop i s :

&DO index-var := s ta r t -va lue &REPEAT expression {SWHILE t e s t }
{&UNTIL t e s t }

index-var i s any val id var iab le name, s ta r t -va lue may be any s t r ing or
ar i thmetic expression. Expression i s another s t r i ng or ar i thmetic
expression which t e l l s how the value index-var i s t o be modified on
each pass through the loop. For example:

&DO I := 5 &REPEAT %I% * 5 &UNTIL %I% > 500

This example se t s I to 5 on the f i r s t t r i p through the loop, then
mul t ip l ies I by 5 on succeeding t r i p s . This loop executes four times,
with I s e t t o 5 , 25, 125, and 625. At the bottom of the fourth t r i p ,
the t e s t "625>500" i s t r u e ; so the loop terminates a t the end of t ha t
i t e r a t i o n .

Note

If no SWHILE or &UNTIL clause i s used, &REPEAT loops are
" in f in i t e loops"; t h a t i s , they have no t e s t for termination.
If you wr i te a &REPEAT loop without a &WHILE or &UNTIL clause,
make sure you include some &RETURN or &GOTO d i rec t ive inside
the loop so t h a t i t can terminate.

&DO &LIST LOOPS

The form of the &DO &LIST loop i s :

&DO index-var &LIST l i s t - o f - i t ems {WHILE t e s t } {&UNTIL t e s t }

index-var i s any va l id var iab le name, l i s t - o f - i t ems can be a l i s t of
items separated by blanks, a var iab le reference, or a function c a l l .
(The var iab le reference or function c a l l may i t s e l f evaluate t o a l i s t
of items.) The maximum length of l i s t -o f - i t ems i s 1024 charac te rs . At

9-11 Second Edition

DOC4302-190

each i t e r a t i o n of t h e l oop , index-var i s s e t t o t he next item on t h e
l i s t . When t h e l i s t i s exhausted, t he l oop t e r m i n a t e s . For example:

&DO I &LIST alpha beta gamma

This statement executes a loop three times, with I equal to alpha on
the first iteration, beta on the second iteration, and gamma on the
third iteration.

&DO I &LIST 50 0 -50

This loop a l s o executes t h r e e t imes , with I s e t t o 50 on t h e f i r s t
i t e r a t i o n , 0 on t h e second, and -50 on t h e t h i r d .

&DO WORD &LIST %line_of_type%

Thi s s t a tement e v a l u a t e s the v a r i a b l e l i n e _ o f _ t y p e , and a s s i g n s each
b l a n k - s e p a r a t e d word or number found in t h a t l i n e t o t h e index
v a r i a b l e , word. For i n s t a n c e , i f t h e va lue of l ine_of_ type were "How
now, brown cow?", then t h e loop would execu te four t i n e s , wi th word s e t
t o "How'n","wnbw,", "brown" and "cow?". A quoted s t r i n g i s a s i n g l e
i tem. If l ine_of_ type were 'Kow now, brown cow' , t h e l oop would
execu te once, with word s e t t o 'How now, brown cow1 .

The a c t i o n of t h e &DO LIST loop i s diagrammed i n F igu re 9 - 5 .

The &LIST loop can a l s o be used with the WILD f u n c t i o n : for example,

&DO I &LIST [WILD @.COBOL]
COBOL %I%

&END

This loop compiles a l l COBOL f i l e s i n t h e c u r r e n t d i r e c t o r y . However,
i f t h e WILD func t ion r e t u r n s a l i s t longer than 1024 c h a r a c t e r s , an
e r r o r occurs t h a t h a l t s t h e CPL program. I f you th ink t h i s may happen
i n your program, use t h e &ITEMS loop , desc r ibed below, i n s t e a d of t h e
&LIST l o o p .

A Nested E xampl e

This module uses nes t ed loops t o spool every r e p o r t i n every t o p - l e v e l
sub-UFD belonging t o UFD SALES. The o u t e r loop a t t a c h e s t o each
sub-UFD in t u r n . The inner loop f i nds t he f i l e s i n t h a t sub-UFD t h a t
end i n ".^REPORT", and spoo l s thei.>.

&FO r-EPT &LIST [WILD @(<: -DIRS] / * Begin d e p t - l o o p
A SALES>%DEPT%
S-DO REPORT' &LIST [WILD @_REFORT -FILES] / * Begin r e p o r t - l o o p

SPOOL %REFORT%
SEND / * End r e p o r t - l o o p

SEND / * End d e p t - l o o p
A SALES / * At tach back t o UFD SALES

Second E d i t i o n 9-12

LOOPS

f NO

c EXIT LOOP 3
SETINDEX-VAR
TO NEXT
ITEM IN LIST

EXECUTE
LOOP

T:

Action of &DO StLIST Loop
(&WHTJLE and/or &UNTIL tests may be added)

Figure 9-5

9-13 Second Edition

DOC4302-190

&DO &ITEMS LOOPS

The &DO &ITEMS loop i s similar to the &DO &LIST loop in t h a t i t
processes a sequence of items, and terminates when i t has exhausted the
items. I t d i f fe rs from &DO &LIST in t h a t i t does not have a l i s t of
items t o read. Instead, the word &ITEMS i s followed by an expression
which i s evaluated a t each i t e r a t i on . Usually, expression i s the WILD
function with the -SINGLE option, returning one filename per i t e r a t i o n .

The form of the &DO &ITEMS loop i s :

&DO index-var &ITEMS expression {6WHILE t e s t } {UNTIL t e s t }

I t i s equivalent t o "&DO I := expression &REPEAT expression &WHILE
[NULL %I%]". The action of the &DO &ITEMS loop i s shown in Figure

9-6.

An example of a &DO &ITEMS loop i s :

&S UNIT := 0 /*This s tep i s essen t ia l
&DO I &ITEMS [WILD @.COBOL @.FTN -SINGLE UNIT]

&S COMPILE := [AFTER %I% .]
%COMPILE% %I%

&END

This example compiles all COBOL and FORTRAN files in the user's current
directory, no matter how many of them there are. It works as follows:

1. The directive &S UNIT := 0 initializes the variable unit with a
value of zero. (Any variable name may be used, unit is only a
handy mnemonic.)

2. The WILD function sees that unit is set to zero. It therefore
opens the user's current directory on some available unit, and
resets unit to identify the unit it's using. (It uses the
decimal number of the file unit.)

3. Since the option -SINGLE has been given, the WILD function
finds the first matching file, and returns that filename as its
value.

4. The &DO processor assigns the value of the WILD function to I.

5. The loop executes.

6. When the loop returns to the &DO statement, the WILD function
is re-invoked. It reads the open unit number from unit, goes
to that unit, and selects the next matching file.

7. The loop executes again.

Second Edition 9-14

LOOPS

YES

c EXIT LOOP

)

c ENTER LOOP

EVALUATE
EXPRESSION
FOLLOWING
&ITEMS

ASSIGN VALUE
OF EXPRESSION
TO INDEX-VAR

EXECUTE LOOP

}
" \

Action of &DO &ITEMS Loop
(&WHILE and/or &UNTIL tests may be added)

Figure 9-6

9-15 Second Edition

DOC4302-190

8. When the WILD function finds no matching file, it returns a
string of length zero and closes the file unit it was using. I
is then set to the null string, and the loop terminates
immediately.

This loop is equivalent to the following &REPEAT loop:

&S UNIT : = 0
&D0 I := [WILD @.COBOL @.FTN -SINGLE UNIT] ~

&REPEAT [WILD @.COBOL @.FTN -SINGLE UNIT] ~
&WHILE A [NULL %I%]

&S COMPILE := [AFTER %I% .]
%COMPILE% %I%
&END

Loops That Read and Wri te F i l e s

The &D0 &ITEMS loop can a l s o be used with CPL's f i l e I/O f u n c t i o n s , a s
shown i n t h e fol lowing example. (For informat ion on t h e s e f u n c t i o n s ,
see Chapter 12.)

/ * Open f i l e ALPHA for reading and w r i t i n g
&S UNIT := [OPEN.FILE ALPHA STATUS -MDDE R]

/ * Read each l i n e i n t u r n
&DO I &ITEMS [READ_FILE %UNIT% STATUS]

&END
CLOSE ALPHA

This example:

1 . Opens the f i l e alpha for reading on some avai lable uni t ,
returning the number of the uni t (in decimal) as the value of
the var iab le , un i t .

2 . Reads one l i n e from the f i l e each time the &D0 &ITEMS statement
i s encountered.

3 . Terminates when i t reaches the end of the f i l e .

(Note tha t in t h i s case, the f i l e i s not closed automatically. The
user must close i t a f ter the loop i s completed.)

Second Edition 9-16

10
Debugging

and Error Handling
in GPL

ENCOUNTERING ERRORS

CPL programs may encounter two types of e r ro r s :

• The commands executed by the CPL program may produce run-time
e r r o r s : for example, a command may t ry to open a f i l e t h a t does
not e x i s t .

• The CPL d i rec t ives themselves may be wr i t ten incor rec t ly : for
example, the word &THEN may have been omitted from an &IF
statement.

CPL offers several l eve l s of control in dealing with run-time e r ro r s .
The simplest method i s shown in the second half of t h i s chapter. More
advanced methods a re shown in Chapter 15.

There i s only one way to deal with CPL e r r o r s : t h a t i s , to debug the
program. CPL provides three useful too l s for debugging: no-execute
mode, echoing, and var iab le watching. These are explained in the f i r s t
half of t h i s chapter.

DEBUGGING CPL PROGRAMS

Debugging i s enabled and disabled by the ScDEBUG d i r ec t i ve . I t s format
i s :

&DEBUG options

10-1 Second Edition

DOC4302-190

Available options are shown in Table 10-1, and are explained below.

If no &DEBUG directive is given, debugging is disabled. (This is
equivalent to "&DEBUG &OFF".)

If &DEBUG is given without options, the result is equivalent to

&DEBUG &NO_EXECUTE &ECHO ALL

&DEBUG directives may appear anywhere in a CPL program. A &DEBUG
directive takes effect when it is read, superseding any previous &DEBUG
directives.

If one CPL program RESUMES another program or &CALLs a subroutine, the
first program's debugging options are suspended while the called
program or routine executes. The debugging options are re-enabled when
execution of the first program resumes.

&NO EXECUTE/&EXECUTE

This pair of options determines whether or not commands will be
executed when the CPL program is run. Specifying &DEBUG &NO_EXECUTE
(or saying simply "&DEBUG"), allows you to run through, or "rehearse",
a CPL program. When you give the RESUME command for a program which
begins with "&DEBUG &NO_EXECUTE", the CPL interpreter reads the CPL
file and interprets its directives as usual. However, it does not pass
any commands to PRIMOS. If a CPL error is found, the usual message is
sent and execution is terminated.

The &NO_EXECUTE option thus lets you run through a program as many
times as you need to get rid of syntax errors before performing any of
the commands the file contains. It is especially useful for the CPL
programs which:

• Take a long time to execute

• Edit or update sensitive files

• Use peripheral equipment, such as magnetic tapes

• Contain any sequence of commands which should not be interrupted

&EXECUTE allows the execution of PRIMOS commands.

If neither &EXECUTE nor &NO_EXECUTE is specified, the default is
&EXECUTE.

Second Edition 10-2

DEBUGGING AND ERROR

Table 10-1
&DEBUG OPTIONS

Option

&OFF

&NCLEXECUTE, &NEX

&EXECUTE, &EX

&ECHO {ALL, COM, DIR}

&NO_ECHO {ALL, COM, DIR}

SWATCH {var l var2 . . . v a r l 6 }

&NO_WATCH {var l var2 . . . v a r l 6 }

Action

Turns off a l l debugging opt ions.
I n i t i a l l y a l l options a r e off.

Suppresses execution of PRIMDS
commands, but i n t e r p r e t s CPL
d i r ec t ives .

Enables execution of PRIMDS
commands.

If ALL i s specif ied, echoes PRIMDS
commands and CPL d i r e c t i v e s . If
COM i s specified, echoes only
PRIMDS commands. If DIR i s
specified, echoes CPL d i r e c t i v e s .
Default i s ALL.

ALL cancels a l l echoing. COM
cancels echoing of PRIMDS commands.
DIR cancels echoing of CPL
d i r ec t i ve s . Default i s ALL.

Adds the specified var iables t o the
wa tch l i s t . When the value of a
watched var iab le i s changed using
the &SETVAR d i rec t ive (not the
SET_VAR command), CPL repor ts t h i s
fact and the new value of the
var iab le . At most 16 var iables can
be on the wa tch l i s t . If no
var iables a re present , a l l
variables a re watched.

Removes the specif ied var iables
from the wa tch l i s t . If no
var iables are specif ied, watching
i s turned off completely.

10-3 Second Edition

DOC4302-190

&ECHO/&NO ECHO

&ECHO and &NO_ECHO control the echoing of commands and directives. If
neither is specified, default is &NO_ECHO.

If &ECHO DIR is given, CPL directives are echoed on the terminal as
they are read. (A loop directive echoes each time the loop is
executed.) For example, resuming this CPL program:

&DEBUG I
&DO I : =

&TYPE
&END

icECHO DIR
1 &TO
%I%

3

luces this terminal session

OK, R EX
&DO I : =
1
SEND
&DO I : =
2
SEND
&DO I :=
3
SEND
OK,

1 &10

1 &TO

1 &TO

3

3

3

If &ECHO COM is given, PRIMOS commands are echoed. If our sample
program read "&DEBUG &ECHO COM", its execution would look like this:

OK, R EX
TYPE 1

1
TYPE 2

2
TYPE 3

3
OK,

If &ECHO ALL (or simply &ECHO) is given, commands and directives are
both echoed. If our sample program said "&DEBUG &ECHO", a terminal
session would look like this:

OK, R EX
&DO I := 1 &TO 3

TYPE 1
1
SEND
&DO I := 1 &TO 3

TYPE 2

Second Edition 10-4

DEBUGGING AND ERROR

2
&END
&DO I := 1 &TO 3

TYPE 3
3
SEND
OK,

&NO_ECHO t u r n s off echoing . I f a program begins wi th t h e d i r e c t i v e
"&DEBUG &ECHO ALL", and l a t e r c o n t a i n s the directive
"&DEBUG &NO_ECHO COM", then echoing of commands is halted, but echoing
of directives continues.

SWATCH/&NO WATCH

The SWATCH d i r e c t i v e l e t s you t r a c e t h e v a l u e s of up t o 16 l o c a l and/or
g loba l v a r i a b l e s , watching whatever changes a r e made by t h e &SETVAR
directive. (This includes changes made by the CPL interpreter itself,
such as those which occur by setting the index variable of a loop or
recording a new SEVERITY value. They do not include values set by the
SETVAR command or the GV$SET routine.) For example, this trivial
program:

&DEBUG SWATCH
&D0 I := 1 &T0 5

&S J := %I% * %I%
&END

produces the following result:

OK, R EX2
Variable "I" set to "1" at line 2.
Variable "J" set to "1" at line 3.
Variable "I" set to "2" at line 4.
Variable "J" set to "4" at line 3.
Variable "I" set to "3" at line 4.
Variable "J" set to "9" at line 3.
Variable "I" set to "4" at line 4.
Variable "J" set to "16" at line 3.
Variable "I" set to "5" at line 4.
Variable "J" set to "25" at line 3.
Variable "I" set to "6" at line 4.
OK,

Note that the loop's index is shown as being set to i ts f irst value at
the top of the loop, but as being incremented at the &END statement
each time thereafter.

10-5 Second Edition

DOC4302-190

ERROR HANDLING

Whenever a PRIMOS command is executed, it produces an error code (known
as a severity code). Possible severity codes are:

Code

0
positive integer
negative integer

Meaning

No error
Error
Warning

CPL's default response to these severi ty codes i s t o ignore codes of 0
or l e s s , but t o h a l t execution of the CPL program if a sever i ty code of
1 or greater i s received.

The StSEVERITY di rec t ive allows CPL to perform error checking
automatically af ter the execution of each command. Therefore, if you
wish to a l t e r CPL's default error handling during par t or a l l of any
CPL program, you may use a &SEVERITY d i rec t ive to specify the action
you want taken. Possible &SEVERI1Y di rec t ives a r e :

Directive

(SWARNING)
&SEVERITY &ERROR [&IGNORE

Meaning

Ignore all error codes, continue
execution.

&SEVERITY &WARNING &FAIL Halt execution if any warning or
error is received.

^SEVERITY &ERROR &FAIL Ignore warnings (code < 0), halt
execution for errors (code > 0).
(Default)

&SEVERITY (equal to &SEVERITY
&IGNORE)

EARNING

&SEVERITY &ERROR &ROUTINE
rout ine- label

Invoke the specified routine if
an error occurs. Ignore
warnings.

^SEVERITY &WARNING fcROUTESIE
rout ine- label

Invoke the specified routine if
any warning or error i s
received.

Second Edition 10-6

DEBUGGING AND ERROR

^SEVERITY directives may be placed anywhere in a CPL program. They
become effective when execution of the program reaches the line in
which they occur, and they remain effective until either

• The program terminates

• A new &SEVERIT¥ directive is encountered

If one CPL program invokes another (or if it invokes one of its
routines), then the effectiveness of the &SEVERITY directive is
suspended while the second program (or routine) executes. If the
invoked program or routine defines its own error handling, that takes
effect. If the program defines no error handling, CPL's default error
handling takes effect from the time the new program or routine is
invoked until it returns to its caller (that is, to the first CPL
program).

A possible sequence of error handling is shown in Figure 10-1. Chapter
15 contains further explanation of CPL's error handling, including:

• How to define your own error conditions.

• How to write error-handling routines.

• How to define your own condition handling.

• How to make a &RETURN directive pass a severity code to its
caller.

• How to use the &STOP directive to halt a routine and its calling
program simultaneously.

10-7 Second Edition

DOC4302-190

AA.CPL BB.CPL

(1)

(2)
(5)

(6)

(7)

&SEVERIIY &WARNING &FAIL

RESUME BB.CPL

&SEVERITY &ERROR &FAIL

ScRETURN

(3)

StSEVERITY &ERROR &IGNORE

StRETURN

(4)

Action

1 . AA.CPL s e t s e r r o r handl ing t o
&SEVERITY &WARNING &FAIL.

2 . AA.CPL invokes BB.CPL.

3 . BB.CPL s e t s e r r o r handl ing t o
&SEVERIIY &ERROR &IGNORE.

1.

2.

Error Handling

Program will halt if
gets a warning message.

it

AA.CPL's error
suspended.

handling is

4. BB.CPL returns to AA.CPL.

5. Execution of AA.CPL continues,

6. Execution of AA.CPL encounters
&SEVERITY &ERROR &FAIL
directive.

7. AA.CPL returns.

3. No error codes can halt
BB.CPL's execution. (PRIMOS
condition codes, such as
pointer faults or access
violations, can still halt
BB.CPL's execution.)

4. BB.CPL's error handling is
terminated.

5. Error handling is SSEVERITY
SWARNING &FAIL again, as AA.CPL
originally set it.

6. AA.CPL's error handling
changes to system default
error handling (that is, halt
for errors, ignore warnings).

7. AA.CPL's error handling is
terminated. (Error handling is
determined by AA.CPL's caller.)

Scope of ^SEVERITY Directive
Figure 10-1

Second Edition 10-8

PART III

FuU GPL

11
Expression

Evaluation in GPL

PRODUCTION

This chapter provides a detailed explanation of how CPL handles
character strings and arithmetic expressions. The first half of the
chapter discusses string handling, with particular reference to:

• How variables are defined and evaluated.

• How function calls are used and evaluated.

• How quoted strings are handled in variables, in function calls,
and in CPL generally.

• How the RESCAN function may be used to force evaluation of a
quoted string containing variables or function calls.

• How the &EXPAND directive may be used to allow commands in a CPL
program to contain abbreviations from an ABBREV file.

•Hie second half of the chapter discusses the evaluation of arithmetic
expressions in CPL. It also explains the CALC function, with which
users may force evaluation of an arithmetic expression within a command
or a function call.

11-1 Second Edition

DOC4302-190

VARIABLES

A CPL variable name may be up to 32 characters in length. It may
contain the letters, digits, "_", or ".". Names of local variables
must start with a letter (to avoid confusion with numbers). Names of
global variables must start with ,,.n. M$" is reserved for predefined
PRIMOS variables. Variables always take character strings as values;
the maximum length of a value is 1024 characters.

Variables are not declared in CPL. They are defined by assigning them
a value for the first time. There are two kinds of variables, local
and global. Both may be assigned values using the &ARGS directive, the
&SET_VAR directive, or the SETJVAR command. For example:

&SETVAR PUUPROG := RICHS>EVAL.PLl

sets the local variable PL1_PRCG to the value "Ria^EVAL.PLl1*.

The SET_VAR command is used to define global variables at command
level. The &SET_VAR directive, which is both faster and more flexible,
should be used for defining variables within a CPL program.

Local Variables

Local variables are defined only in the activation of the CPL program
in which they are set; they are not defined in a recursive invocation
of the same CPL program, nor in an invocation of another CPL program.
If their values are needed in an invocation of a CPL program, local
variables must be passed as arguments. Local variables are deleted
when the program in which they are defined finishes. Local variables
cannot be set outside a CPL invocation.

Global Variables

Globabl variables are distinguished from local variables by having
names that start with a period. So,

&SETVAR .HOME := RICHS

sets the global variable .HOME to the value "RICHS". Global variables
are associated with a particular user, and not with any program; they
can be referenced in any CPL procedure invoked by that user. The names
and values of global variables survive the invocation of a program in
which they are used. Thus, if a user ran a CPL program which set a
global variable, .A_GLOB_VAR, he could run another CPL program which
referenced that variable. Furthermore, the names and values of global
variables survive logout. When a user logs in, any global variables he
defined in a previous session are still available.

Second Edition 11-2

EXPRESSION EVALUATION

Global var iables survive program invocations and logouts because they
are saved in a user defined f i l e . This f i l e i s defined by the
DEFINE_GVAR in te rna l command (see Chapter 4) . If a user intends t o use
global var iables during a terminal session, he must use a DEFINE_GVAR
command before the f i r s t global var iable reference.

Global var iables a re deleted using the PRIMDS command DELETE_VAR:

DELETE_VAR i d l id2 . . . idn

Each id i s an expression which must evaluate to a var iab le name; these
variables a re deleted.

The PRIMDS command LISTJVAR {wild_namel, . . . , wild_nameN} l i s t s global
variables and t h e i r values a t the u s e r ' s terminal . If no wildcard
names are given, a l l var iables a re l i s t e d ; i f present , only those
matching the given wildcard names are l i s t e d .

Evaluation of Variables

A var iab le i s referenced by enclosing i t s name in percent s igns , as in
%variable_name%. An example of a statement referencing var iables i s :

FTN %PArfflNANE%.FTN -LIST %PATHNM4E%.LIST -BIN %PATHNAME%.BIN -DYNM

The s t r i ng %PArfflNAME% i s replaced with the value of the var iab le
pathname. For example, i f pathname has the value "HOBBIT", then the
above statement i s transformed i n t o :

FTN HOBBIT -LIST HOBBIT. LIST -BIN HOBBIT.BIN -DYNM

When a statement contains var iable references, a l l references are
replaced by the t h e i r values before the statement i s executed.
Variable evaluation i s performed only once per statement. If var iable
var has the value "%XXX%", then when var i s evaluated the reference i s
replaced by "%XXX%" and tha t s t r ing remains in the t e x t . I t i s not
reevaluated as a var iab le reference.

Variable references are not evaluated inside quotes.

FUNCTIONS

Functions are procedures which return s t r ing values . These s t r i ng
values a re subs t i tu ted for the function c a l l in the or ig ina l statement.
The maximum length of a function r e s u l t i s 1024 charac ters . A function
c a l l i s indicated by square brackets :

[function-name a rg l . . . argn]

11-3 Second Edition

DOC4302-190

where function-name is the name of the function, and argl through argn
are its arguments. An example of a function call is:

PL1 %FL1_J3R0G% -L [BEFORE %PLl_ER0G% .PL1] .LIST

The function BEFORE will return that part of the value of PLUROG that
occurs before the first occurrence of ".PLl". If PL1_PR0G has the
value "RICHS>EVAL.PL1", then the statement is transformed into:

PLl RICHS>EVAL.PLl -L RICHS>EVAL.LIST

before it is executed.

Variable references are evaluated prior to function calls; this is
illustrated by the example just given; the variable reference
"%PL1_J>R0G%" is replaced by "RICHS>EVAL.PL1" before the call to the
function is evaluated.

Function evaluation is done recursively; any or all of function-name
or argi may themselves contain function calls. Innermost calls are
done first. There is no implementation restriction on the depth of
nesting.

Function calls are not evaluated inside quotes.

QUOTED STRINGS

CPL uses the single quote when it is necessary to quote a string. In
particular, quotes must be used if:

• A string contains a literal quote character, as in

'quote''inside'

Note that a quote is included in a string by doubling it.

• A string contains at least one blank or comma, but is supposed
to represent one token. For example,

'a multiple token'

• A string contains at least one of the characters "[];,%", and
the literal meaning of the characters is desired. Since these
characters have meanings in CPL syntax, these meanings must be
suppressed by quotes. For example,

'hide_this_[function call]'

• A string contains an arithmetic operator surrounded by blanks,
and the literal meaning is desired. For example,

'not a + operator'

Second Edition 11-4

EXPRESSION EVALUATION

• A s t r i n g begins with the character "-" , but i t i s not intended
tha t the value represent a command control argument, as in

1-not_a_control_argument'

Note t ha t

SETVAR A := ,quotes_go_in ,

se t s A to , , lquotes_go_in l", i . e . , the quotes a re par t of the value.

If two or more var iab le references or function c a l l s a re placed s ide by
side the i r values a re concatenated. Thus, suppose x has the value
' " ab 1 " and y has the value " , c d , H . Then

Typing This Produces This
%x%%y% ' a b e d '
%x% %y% 'ab1 'cd1

In the f i r s t example, the values of x and y are concatenated by
removing the t h e i r r igh t and l e f t quotes respect ively . In the second
example, the intervening blank causes the references t o be replaced
without concatenation. Similar rules hold for function c a l l s .

CPL provides a function which wi l l unquote s t r i n g s . A c a l l on the
function UNQUOTE has the form

[UNQUOTE s t r ing]

For example,

[UNQUOTE ' a b ']
[UNQUOTE %x%]

The UNQUOTE function removes the outermost pa i r of quotes (if any), and
changes every pai r of adjacent quotes t o a s ingle quote:

%x%
ab
' ab '
" ' a b ' "
i a i i b i n
M I 3 1 1 1 1 U 1 1 1

[unquote %x%]
ab
ab
•ab'
a ' b '
' a ' ' b '

No other act ion i s taken.

The QUOTE function w i l l quote s t r i ngs . A c a l l on t h i s function has the
form:

[QUOTE s t r ing -1 {string-2} . . .]

For example,

[QUOTE abc]

11-5 Second Edition

DOC4302-190

[QUOTE %a% %b% def]

The QUOTE function adds an outer pair of quotes t o i t s arguments. If
an argument of the quote function already contains quotes, these quotes
w i l l be automatically doubled t o preserve the or iginal meaning of the
s t r i ng . This works for any number of quote l e v e l s . So, suppose x has
the value "ab 'c 'd" , then

[QUOTE %x%] returns ' a b ^ c ' ' d 1

If t h i s r e s u l t were the argument of another c a l l on QUOTE, as in

[QUOTE [QUOTE %x%]]

then the r e s u l t would be

' " a b " 1 ' c ' ' " d 1 "

The RESCAN Function

The RESCAN function may be used to force evaluation of quoted variable
references and function calls. This function strips one layer of
quotes from its argument and evaluates any function calls or variable
references which are not still quoted. To illustrate the use of this
function, suppose a CPL program test_a_fun has an argument
funs_and_vars, which has as its value a string containing variable
references and function calls. That is, funs_and_vars might be
"[length %holycow%]". If we try invoking test_a_fun by:

r test_a_fun [length %holycow%]

the call on function length and the variable reference will be
evaluated, not at all what was intended. Clearly, we must type:

r test_a_fun '[length %holycow%]'

The quotes will suppress evaluation and "'[length %holycow%]'" will be
assigned to funs_and_vars. However, when test_a_fun wants to evaluate
the function call in funs_and_vars, using just %funs_and_vars% would
give the value with its quotes, again suppressing evaluation of the
function. The rescan function must be used to strip the quotes and
evaluate the string "[length %holycow%]". Thus, test_a_fun might
contain the statement:

&if [rescan %funs_and_vars%] > 100 &then &return

which causes test_a_fun to return if the length of the value of holycow
is greater than 100.

Second Edition 11-6

EXPRESSION EVALUATION

USING ABBREVIATIONS

The &EXPAND Directive

The &EXPAND d i rec t ive enables and disables statement expansion within a
CPL program. I t s form i s :

&EXPAND (ON 1
[OFF]

&EXPAND ON causes the CPL in te rp re te r t o pass each command in the CPL
f i l e to the abbreviation pre-processor for abbreviation expansion. The
command i s passed before var iab le evaluation, function evaluat ion, and
execution. Directives a r e not passed t o the pre-processor. Therefore,
user-defined abbreviat ions cannot be used in CPL d i r ec t i ve s .

In order for expansion t o work, the command

ABBREV pathname -ON

must be given e i the r a t command level or within the CPL program before
any abbreviations a re used.

&EXPAND di rec t ives take effect when they are read. They a re effect ive
only for the procedure tha t defines them; they do not carry over in to
programs or rout ines invoked by tha t procedure.

&EXPAND OFF disables expansion. This i s the defaul t s e t t i ng .

EVALUATION OF EXPRESSIONS

Evaluation a t PRIMPS Command Level

When var iables and functions are used in t e rac t ive ly , the command
processor evaluates references and c a l l s . Variable references a re done
f i r s t . So, suppose the var iable .SRC has the value "MYJJFD" and
var iable .FILE the value "MY.PRCG.FTN". The l i n e :

FTN %.SRC%>%.FILE% -L [BEFORE %.FILE% FTN].LIST -B NO

would f i r s t have i t s var iab le references replaced:

FTN MY_UFD>MY_PROG.FTN -L [BEFORE MY_PROG.FTN FTN] .LIST -B NO

11-7 Second Edition

DOC4302-190

Functions calls are done second. Thus, the above line would be
converted to:

FTN MY_UFD>MY_PROG.FTN -L MY_PRCG.LIST -B NO

before it is executed. This completes variable and function evaluation
at command level.

If abbreviation processing has been enabled by the &EXPAND ON
directive, the command line is passed to the abbreviation preprocessor
for evaluation before variables and functions are evaluated.

Evaluation Within a CPL Invocation

When variables and functions are used inside a CPL program, the CPL
interpreter evaluates references and calls. This is done because
expressions must be evaluated in CPL directives (which the command
processor does not understand) as well as in commands.

As in interactive evaluation, variable references are processed before
function calls. However, in CPL directives there is a third step: an
implicit call on the CALC function. (Chapter 12 describes CALC;
briefly, this function calculates the values of arithmetic
expressions.) CPL calls CALC on any expression in a CPL directive. If
the expression contains operators delimited by blanks which are
recognized by CALC, the operations are done; otherwise, the original
string is returned. If operators are not to be interpreted by CALC,
they must be quoted or not delimited by blanks. Thus, instead of
saying:

&IF [CALC %I% > 5] &THEN &RETURN

we can say:

&IF %I% > 5 &THEN &RETURN

The implicit call to CALC is done last, after variables and functions
have been evaluated. This implies that if infix operators are used
inside a function call, CALC must be called explicitly. For example,
suppose A has the value "5" and B the value "2". We must say

&IF %I% = [MOD [CALC %A% * %B%] %MDDULUS%] &THEN &RETUFN

because omitting the call on CALC would cause the string "5 * 2" to be
taken as the first argument of the MOD function. Since "5 * 2" does
not convert to an integer, an error will result (the function MOD does
not "understand" that "*" means multiplication).

Second Edition 11-8

EXPRESSION EVALUATION

All uses of arithmetic operators in HRIKDS commands must be inside an
explicit CALC invocation. For example, the command line

primos_command 1+5

represents a use of the string "1+5M, while

primos_command [calc 1 + 5]

represents a use of the addition operator.

If statement expansion is in effect and the current statement is not a
CPL directive, the statement is then passed to the abbreviation
preprocessor. The string returned by the preprocessor is then passed
to the system command processor for execution.

11-9 Second Edition

12
Command Functions

THE CALC FUNCTION

Arithmetic expressions may be evaluated using the function CALC. I t s
form i s :

[CALC infix_expression]

This function evaluates expressions containing the logica l operators &
(and), | (or) , and * (not) ; the ar i thmetic operators +, - , *, / , unary
+, and unary - ; and the re la t iona l operators =, <r >, <=, >=, and A=.
The precedence i s :

Highest: A unary + unary -
/ *
+ -
= ~= < > <= >=

Lowest: I

Parentheses may be used to alter the assigned precedence in the usual
way. Five levels of nesting are allowed. Unparenthesized expressions
containing operators of equal precedence are evaluated from left to
right.

12-1 Second Edition

DOC4302-190

Notes

1. All operators which are to be evaluated by CALC must be
delimited by blanks. This restriction resolves the
ambiguity which can arise from the fact that "*", "<", and
">" are also valid pathname characters.

2. If CALC is given an expression containing more operators
than it can handle, it prints the error message, "Operator
stack overflow." If you receive this message, rewrite the
calculation to break it down into simpler expressions.

Logical and relational operators return Boolean values. The strings
"TRUE", "true", "T", and "t" all represent Boolean true, while "FALSE",
"false", "F", and "f" represent false.

Arithmetic operators return a character string representation of the
numeric result. Arithmetic operators apply only to integer values;
CPL has no floating point arithmetic.

All the arithmetic operators have the usual definition, except for /
which returns only the truncated integer part of any non-integer
result. The final result is converted to a string and that string is
returned as the value of CALC.

Arithmetic, logical, and relational operators have some restrictions on
the kind of operands they accept. Arithmetic operators must have
operands which convert to integers. (Strings which convert to integers
must contain only digits, except possibly for a preceding sign and
leading and trailing blanks: the resulting value must be in the range
-2**31 + 1 ... 2**31 - 1.)

Logical operators must have operands which are Boolean. Suppose tvar
and fvar are variables whose values are "true" and "false",
respectively, and four, five, and six are variables with the values
"4", "5", and "6". Then

%tvar% & %fvar%
(%four% < %five%)

%tvar% | (%four% < %five%)

are a l l valid expressions. However,

%tvar% | (%four% + %five%)

is not valid since "%four% + %five%" is not a Boolean expression. The
value returned by CALC is "TRUE" if the logical operations result is
true, and "FALSE" otherwise.

Second Edition 12-2

COMMAND FUNCTIONS

Relational operators accept either numeric or non-numeric operands. If
a relational operator is given a non-numeric operand, a string
comparison will be done. If both operands are either numeric or
Boolean, an arithmetic comparison is done. Boolean true is interpreted
as "1" and false as "0".

If we used relational operators with our sample variables, the
expressions:

%four% + %five%
%six% * (%four% - %five%)

would be legal, while:

%four% + 'i',m_not_a_numberl

%four% + %tvar%

would not.

As in the other functions, the expression in GALC may contain function
c a l l s and var iable references. The expression l e f t af ter these are
evaluated should, of course, be a va l id log ica l or ar i thmetic
expression.

OTHER ARITHMETIC FUNCTIONS

• [HEX hex-str ing]

hex-str ing i s an expression which must evaluate t o a va l id hexadecimal
number. This function re turns a s t r i ng representat ion of the decimal
equivalent of hex-s t r ing . For example: [HEX A] re turns "10".

^ [MOD decimal-str ing decimal-string]

Both arguments must be expressions t ha t evaluate t o decimal numbers.
[MOD decl dec2] re turns the s t r ing representat ion of the value of decl
modulo dec2. That i s , i t re turns the remainder resu l t ing from divis ion
of decl by dec2. For example: [MOD 27 4] re turns " 3 " .

^ [OCTAL oc ta l - s t r ing]

oc t a l - s t r i ng i s an expression which must evaluate t o a va l id octa l
number. This function re turns a s t r i ng representat ion of the decimal
equivalent of o c t a l - s t r i n g . For example: [OCTAL 10] re turns "8" .

12-3 Second Edition

DOC4302-190

^ [TO_HEX decimal-string]

decimal-str ing i s an expression which must evaluate to a va l id decimal
number. This function returns a s t r ing representat ion of the
hexadecimal equivalent of decimal-string. For example: [TO_HEX 15]
returns "F".

• [TOjOCTAL decimal-string]

decimal-string i s an expression which must evaluate t o a va l id decimal
number. This function returns a s t r ing representat ion of the octal
equivalent of decimal-string. Example: [TO_OCFAL 8] re turns "10".

STRING FUNCTIONS

Some of the following functions wi l l quote t he i r r e su l t s and others
w i l l not . If the r e su l t of a function i s most l i k e l y t o be used as a
s ingle token, but contains a semicolon, comma, blank, or quote, or if
the r e s u l t i s an ari thmetic or logical operator, the function wi l l
quote i t s r e s u l t . If the r e su l t i s most l i ke ly t o be used as a l i s t of
mult iple items, the r e su l t i s not quoted. The automatic quoting i s
done only i f the r e su l t contains one of the del imi ters mentioned, or i f
i t consis ts of an operator. Thus, the AFTER function quotes i t s r e s u l t
since the user most l i ke ly wants to t r e a t i t as one syntac t ic token.
The WILD function, on the other hand, does not quote i t s r e s u l t since
the user most l i ke ly wants to use the r e su l t as a blank separated l i s t
of names rather than as a s ingle s t r ing with embedded blanks.
Functions which always return one token, such as LENGTH, do not quote
t he i r r e s u l t s .

In the l i s t t ha t follows, an as ter isk precedes the descr ipt ion of any
function t ha t quotes i t s r e s u l t s .

^ * [AFTER s t r i ng f ind-s t r ing]

returns the substr ing of s t r ing tha t occurs to the r igh t of the
leftmost occurrence of f ind-s t r ing in s t r i ng . I t re turns the nul l
s t r ing if f ind-s t r ing does not occur in s t r i ng or i f f ind-s t r ing i s a t
the r ight end of s t r ing . For example: [AFTER abc.def .x .] re turns
"def.x".

• * [BEFORE s t r ing f ind-s t r ing]

re turns the substring of s t r ing tha t occurs t o the l e f t of the leftmost
occurrence of substring f ind-s t r ing in s t r i ng . I t re turns s t r i ng i f
f ind-s t r ing does not occur in s t r ing , and re turns the nu l l s t r i n g i f

Second Edition 12-4

COMMAND FUNCTIONS

find-string is at the left end of string. For example:

[BEFORE abc.def.x .] returns "abc".

• [INDEX string find-string]

returns the position of the leftmost occurrence of find-string within
string. If find-string does not occur withing string, INDEX returns
"0". For example: [INDEX abcdef de] returns "4".

^ [LENGTH string]

returns the number of characters in string.

• [NULL string]

returns "TRUE" if string is the true null string or '', and "FALSE"
otherwise.

• [QUOTE stringl string2 string3 ...]

adds an outer pair of quotes and doubles the quotes already in strings
string{i}. This function is useful when it is necessary to suppress
the meaning of special symbols through calls to subsystems (see Chapter
11 for a discussion of quotes). Examples:

[QUOTE xy' | 'z] returns '"xy" | " z " '
[QUOTE abc 'de' fg] returns "'abc " d e " fgIH

• [SEARCH stringl string2]

returns the index (counting from 1) of the first character in stringl
that appears in the string string2. For example: [SEARCH abc.def
<>.+] gives "4". If no character of stringl appears in string2r the
SEARCH function returns 0.

• * [SUBST stringl string2 string3]

replaces all occurrences of string2 in stringl with string3. Example:
[SUBST aabbaabbaa bb qq] returns "aaqqaaqqaa".

12-5 Second Edition

DOC4302-190

• * [SUBSTR string start-pos {num-chars}]

start-pos must be numeric, and num-chars must be either omitted or
numeric. If we count positions from left to right starting at 1, then
[SUBSTR string start-pos] returns all characters in string in positions
start-pos, start-pos+1, start-pos+2f etc. to the end of string. If
num-chars is present, [SUBSTR string start-pos num-chars] returns the
first num-chars characters in string to the right of and including the
character in position start-pos. If start-pos and/or num-chars specify
a substring that runs off the end of string, then start-pos and/or
num-chars are reduced until the substring is proper or the null string
results. Examples:

[SUBSTR abode 3 2] returns "cd"
[SUBSTR 'ab de' 2] returns IMb de1"

!*• * [TRANSLATE string {out-chars in-chars}]

returns a string computed by the rule: for each character in string,
if that character appears in the ith position in in-chars, then replace
it with the ith character in out-chars. More explicitly,

for each character in string:
if current_char_in_string is in the ith position in in-chars

then next__char_in_result = ith character in out-chars
else next_char_in_result = current_char_in_string

If both out-chars and in-chars are omitted, all lowercase letters in
string are converted to uppercase, and that result is returned. If
only in-chars is omitted, then in-chars is assumed to be the entire
ASCII collating sequence. Examples:

[TRANSLATE abc] returns "ABC"
[TRANSLATE 'abc' 123 cab] returns n,231,M

[TRANSLATE mixxpelled s x] returns "misspelled"

• * [TRIM string {which-side} {triro-char}]

trims a leading or trailing sequence from string. If which-side and
trim-char are both omitted, leading and trailing blanks are trimmed.
which-side specifies where the trimming occurs, and may be any of
"-right", "-left", or "-both", trim-char specifies the character to be
trimmed. If only trim-char is omitted, a blank is assumed. Example:
[TRIM bbbabcbbb -both b] returns "abc".

Second Edition 12-6

COMMAND FUNCTIONS

• [UNQUOTE string]

removes one outer pair of quotes and changes every pair of adjacent
quotes remaining to a single quote. (See discussion of quotes in
Chapter 11). For example:

[UNQUOTE ',,xxI,,,yy'»•] returns ,xx,,yy'.

• [VERIFY stringl string2]

returns the index (counting from 1) of the first character in stringl
that DOES NOT appear in the string string2. For example: [VERIFY
1298s8 0123456789] gives "5". The VERIFY function returns 0 if all
characters in stringl appear in string2.

FILE SYSTEM FUNCTIONS

rFE
{-BRIEF}]

/

• [ATTOIB path
-TYPE
-DTM
-LENGTH

19.0

This function returns information about the file specified by path.
Exactly one of the options -TYPE, -LENGTH, or -DTM, must be given on
each call. The -TYPE option causes the function to return the type of
the file path: "SAM", "DAM", "SEGSAM", "SEGDAM", "UFD", "ACAT", or 1 9 # 0

"UNKNOWN". The -DTM option returns the date/time modified information
on the file in the format produced by [DATE -FULL]. The -LENGTH (-LEN)
option returns the length of the file in words.

The -BRIEF option, if used, suppresses the printing of messages hy 1 9 I Q
ATTRIB.

^ * [DIR path {-BRIEF}] |19.0

returns the directory portion of the pathname path. For example: [DIR
smith>x>y] returns "smith>x". "*" (representing the home directory) is
returned if the pathname is a simple filename.

The -BRIEF option, if used, suppresses the printing of messages by the ,q n

-DIR function.

• [ENTRYNAME path]

returns the entryname portion of the pathname path. Example:

[ENTRYNAME smith>x>y] returns "y".

12-7 Second Edition

DOC4302-190

19.01 • [EXISTS path {type} {-BRIEF}]

returns "TRUE" if there ex is t s a f i l e system object with pathname path
of type type, and "FALSE" if not. If type i s -ANY, any type of object
wi l l suff ice. type may also be -FILE, -DIRECTORY, -DIR,
-SEGMENT_DIRECrORY, -SEGDIR, ACCESS_CATEGORY, or ACAT, to check for the
existence of an object of tha t type. The defaul t type i s -ANY.

The -BRIEF option can be used t o suppress the pr in t ing of messages by
the EXISTS function.

19.0
^ [GVPATH]

returns the pathname of your act ive global var iable f i l e . GVPATH
returns -OFF if you have no global var iable f i l e defined or ac t ive .

• [OPEN_FILE pathname -MODE m status-var]

This function i s useful when a user wants t o open a f i l e for
reading/writing without having t o specify a uni t number as in the
PRIMOS open command. The f i l e specified by pathname i s opened on some
avai lable un i t ; the uni t number i s returned as the value of the
function. The mode indicates whether the f i l e i s t o be opened for
reading only (m = "r" or "R"), writ ing only (m = "w" or "W"), or
reading and wri t ing (m = "wr" or "WR", posi t ion independent). The
var iable whose name i s s ta tus-var i s se t t o "0" i f the operation i s
successful and i s nonzero otherwise; s t a tus var may be local or
global .

For example, a c a l l on OPEN_FILE might be:

&S READ_UNIT := [OPEN_FILE ALPHA -MODE R OK]

In t h i s example, the f i l e named ALPHA wi l l be opened, and the number of
the uni t returned as the value of the var iable READJJNIT. The var iab le
OK wi l l be s e t t o 0 if the f i l e opening i s successful. I t w i l l be se t
to a non-zero value if the f i l e opening i s not successful. (Because
the value of OK i s being se t , not referenced, by the function c a l l f no
percent signs surround the var iable name.)

Second Edition 12-8

COMMAND FUNCTIONS

^ [PATHNAME r e l - p a t h {-BRIEF}] | l9 .0

returns the f u l l pathname given the r e l a t i ve pathname re l -pa th . Note
tha t [DIR [PATHNAME x]] re turns the pathname of the home d i rec tory .

The pathname function works correct ly whether or not the rightmost
component of re l -path e x i s t s . But i t produces an error i f any other
directory in re l -path does not ex i s t . For example:

[PATHNAME *>FOO>BAR]

returns a f u l l pathname whether BAR ex i s t s or not , but produces an
error i f FOO does not e x i s t .

The -BRIEF option can be used t o suppress the p r in t ing of messages fcy
the PATHNAME function. 19.0

• * [READ_FILE uni t s ta tus -var {-BRIEF}] 119.0

This function reads a record from the f i l e open on uni t (a decimal
integer) and re turns the quoted value of t h a t record as i t s value (that
i s , the t ex t read replaces the function c a l l in the CPL program t e x t) .
The var iab le s ta tus-var i s se t t o "0" if the operation i s successful
and nonzero otherwise. (I t i s s e t t o " 1 " when End of F i l e i s reached.)

19.0 The -BRIEF option may be used t o suppress any messages READ_FILE might
p r i n t . For example, a c a l l on READ_FILE, following the opening of the
f i l e shown in the example above, might be:

&S LINE := [READ_FILE %READ_UNIT% OK]

When t h i s function c a l l i s evaluated, a l i ne i s read from the f i l e
previously opened on UNIT %READ_unit%. The l i ne of t ex t i s then
returned as the value of the var iab le LINE. The var iab le OK i s s e t to
0 if the read i s successful, to 1 if End of F i l e has been reached, or
to some other non-zero value i f an error has occurred. Again, since
the value of OK i s being s e t each time the function c a l l i s evaluated,
the var iab le name i s not placed inside percent s igns .

^ [WILD wild-path wild-2 . . . wild-n {control} {-BRIEF}] 119.0

produces a blank-separated l i s t of entrynames representing the f i l e
system objects t ha t match the speci f ica t ions of wild-path, wi ld - i and
control . wild-path speci f ies the directory to consider, and the f i r s t
wildcard name. The wi ld - i specify addit ional wildcard names (these may
not be pathnames). control specif ies DTM or type r e s t r i c t i o n s :
-BEFORE date , -BF da te , -AFTER date , -AF da te , -FILE, -FL, -DIRECTORY,
-DIR, -SEGMENT_DIRECTORY, -SEGDIR, -ACCESS_CATEGORY, -ACAT.

12-9 Second Edition

DOC4302-190

Example: [WILD @.pll §.ftn -fl] might produce the list "a.pll b.pll
foo.ftn bar.ftn z.pll".

It is easy for a call on wild to produce a result longer than the 1024
character maximum. The -single (-sgl) option causes wild to return
matching names one at a time, rather than in one long string. This
option takes a variable name as an argument; for example

[WILD london>@.pll -single unit-var]

unit-var must be initialized to zero by the user before calling wild to
get the first name. When wild is called with the -single option and
the value of unit-var is zero, wild opens the specifed directory on an
available unit, sets unit-var to the (decimal) number of that unit, and
returns the first matching name as its value. Subsequent calls will
read the directory open on the unit, and return the remaining matching
names one at a time. When no more matching names are found, the true
null string is returned and the directory closed. The user must not
modify the value of unit-var between calls on wild for the same
directory.

The -SINGLE option is especially useful with the &ITEMS directive of
the &DO statement (See Chapter 9 for a discussion of the &ITEMS
directive and an example of the -SINGLE option).

19.01 T^ e ~ B R I E F option, if used, suppresses any messages from the WILD
I function.

^ [WRITE_FILE unit text]

This is the inverse of the reacLfile function. The text is stripped of
one layer of quotes and written on the file open on unit (a decimal
integer). The function returns n0" if the operation is successful and
nonzero otherwise.

Note

CPL uses decimal numbers to refer t o f i l e u n i t s , not octal
numbers. If you open a f i l e by saying:

&SET_VAR A := [OPEKL.FILE THISFILE -MDDE R STATUS]

you should close i t in one of the following three ways:

CLOSE THISFILE
1 9 # 0 CLOSE -UNIT %A%

CLOSE [TO_OCTAL %A%]

Do not say simply, "CLOSE %A%"; t h i s syntax assumes t h a t A i s
an octal value and therefore does not work.

Second Edition 12-10

COMMAND FUNCTIONS

MISCELLANEOUS FUNCTIONS

^ [ABBREV -EXPAND text]

expands text (if text is in fact an abbreviation and if you have an
abbreviation file active), and returns the expanded string as its
result. It does NOT requote the result.

If text is not an abbreviation, text itself is returned. If no
abbreviation file is active, an error is reported.

19.0

• [CND_INFO control-f lag]

This function allows a condition handler to examine the condition
information of the most recent condition on the s tack. The function
re turns d i f ferent information depending on the s e t t i ng of cont ro l - f lag .
If control - f lag i s "-name", the name of the condition i s returned. For
n-continue_switch", l,-cont_sw" the Boolean value of the
continue-to-signal switch i s returned. For "-return_permit",
"-ret_pmt" the Boolean value of the return-permitted switch i s
returned. If no condition frame i s on the stack, -name returns
"$NONE$", and -continue_sw and -return_J?ermit both re turn "FALSE". The
sever i ty code i s s e t t o warning in t h i s case. (For information on
conditions and on Prime's Condition Mechanism, see the Subroutines
Reference Guide.)

• * [DATE {format}]

returns the current date/t ime in a var ie ty of formats. If format i s
omitted, the date only i s returned: 81-10-21. The other p o s s i b i l i t i e s
a re :

19.0

•FULL
•USA
•UFULL
-VFULL
•DAY
•MONTH
•YEAR
-VTS
•TIME
•AMPM
•DOW
•CAL
•TAG
FTAG

81-10-21.13:24:48. Tue
10/21/81
10/21/81.13:24:48.Tue
27 Apr 82 10:54:32 Tuesday
21
October
1981
27 Apr 82
13.24.48
1:24 PM
Tuesday
October 21, 1981
811021
811021.132448

19.0

19.0

12-11 Second Edition

DOC4302-190

^ [GETJVAR expr]

expr must evaluate to a va l id var iable name. GETJVAR re turns the value
o F t h a t var iable if the variable has been defined, or the s t r i ng
"$UNDEFINED$" if i t i s undefined. GETVAR a l so re turns $UNDEFINED$ if

19.0 no global var iable f i l e i s defined or ac t ive . This function can be
used t o t e s t if a variable has been s e t . Example: [GET_VAR
undefined_var] returns "$UNDEFINED$", assuming undefined_var i s indeed
undefined.

GET_VAR can a lso be used t o get the value of a var iab le whose name i s
computed a t runtime. This i s useful for simulating indexing and
indi rec t ion . Example: [GETJVAR a%i%] re turns the value of var iable al
if i has the value " 1 " .

19.01 • [QUERY t ex t {default} {-TTY}]

p r i n t s t ex t on the u s e r ' s terminal output stream, following i t with a
question mark. Print ing i s suppressed i f t ex t i s n u l l . The command
input stream wi l l be read for the u s e r ' s reply, which must be "yes",
"y", "ok", "no", "n" or nul l (case- insens i t ive) . Null input causes the
default t o be returned; i f the default i s not specified, i t i s taken
to be "FALSE". Otherwise, the function returns "TRUE" i f the answer
was "yes", and "FALSE" i f i t was "no". If t ex t and defaul t contain
embedded blanks, they must be enclosed in quotes.

19.0

The -TTY option forces the QUERY function to go the terminal for input,
no matter where the command stream that invoked it originated. Without
this option, the function takes input from whatever command stream
invoked the command line or CPL program containing it, whether that is
a user at a terminal, a &DATA group within a CPL program, or a COMINPUT
file.

• [RESCAN string]

returns the result of stripping one level of quotes from string and
evaluating any function calls or variable references no longer
appearing in quotes. Example: [RESCAN ' [BEFORE '' [do not eval
this]xxx" x]'] returns "[do not eval this]".

19.01 • * [RESPONSE text {default} {-TTY}]

prints text on the user's terminal output stream, following it with a
colon. Printing is suppressed if text is null. The command input
stream will be read for the user's reply, which is returned (possibly
quoted) as the value of the function. If a null reply is entered, the
default is returned. If default is omitted, it is taken to be the null
string. If text and default have embedded blanks, they must be quoted.

Second Edition 12-12

COMMAND FUNCTIONS

The -TT£ op t i on f o r c e s t h e RESPONSE f u n c t i o n t o go t h e t e rmina l for
input, no matter where the command stream t h a t invoked i t or iginated.
Without t h i s option, the function takes input from whatever command ^9.0
stream invoked the command l ine or CPL program containing i t , whether
tha t i s a user a t a terminal , a &DATA group within a CPL program, or a
COMINPUT f i l e .

12-13 Second Edition

13
Arguments

INTRODUCTION

This chapter provides a full reference for the use of arguments in CPL.

It discusses the format and use of:

• Object arguments (that is, positional arguments)

• Option arguments

• Two s p e c i a l argument t y p e s , REST and UNCL

THE &ARGS DIRECTIVE

Syntax: &ARGS {name{:{type}{=default} } . . . } ~
{name: - o p t i o n _ l i s t { name{:{type}{=default} } ; . . . } }

Examples: &ARGS TRUTH; BEAUTY; CHARM

&ARGS TRUTH:DEC; BEAUTY :TREE=A_UFD>FILE; CHARM:CHAR

&ARGS CHARM:CHAR; TR_FLAG.—TR TRUTH:DEC;~
BE_FLAG:-BE BEAUTY :TREE=A UFD>FILE

13-1 Second E d i t i o n

DOC4302-190

CPL provides a powerful argument specification and validation facility.
The &ARGS directive defines a "picture" of the command line that will
be used to invoke this CPL procedure and declares local variables whose
values will be those of the actual arguments. If the command line
typed does not match the picture, a diagnostic is printed and the
severity code set to error (see Chapter 15).

Object arguments are positional; that is, they must appear on the
command line in the same order as they appear in the &ARGS directive.
To allow position independence on the command line, the user may define
option arguments which flag the presence of specific arguments. In
addition, a user may define arguments to be of a particular type, such
as "tree" or "ptr", and have the &ARGS directive verify that the
arguments supplied on the command line match the declared types.
Finally, default values may be defined for arguments; these values are
assigned to the arguments if they are omitted from the command line.
All these features are discussed in detail in the following chapter.

An &ARGS directive may appear anywhere in a CPL procedure; the
arguments on the command line are processed when the &ARGS directive is
encountered. A procedure may have more than one &ARGS directive. If
more than one &ARGS directive is executed, the same command line is
parsed each time.

OBJECT ARGUMENTS

All object arguments are positional; they must appear on the command
line in the same order as they appear in the &ARGS statement. For
example, suppose CPL program X.CPL is to have three arguments. We
might include a statement like this:

&ARGS SOURCE; DEST; NOLINES

If this program is invoked by the command line:

R X A B C

then the variable source has the value "A", dest the value "B", and
nolines the the value "C". Note that in this simple case, lower case
is mapped, to upper case. An error occurs if the user gives too many
object arguments. In the above example, typing:

R X A B C D

would cause the message "Too many object arguments specified. D (cpl)"
to be printed. If too few arguments are given, the omitted ones are
assigned the system default value according to their type, as shown in
Table 13-1.

Second Edition 13-2

ARGUMENTS

SPECIFYING TYPES

The user can specify types for h i s arguments, by adding ": type" a f te r
the argument name. (If " : type" i s omitted, the type defaul ts t o
"char".) Specifying a type r e s t r i c t s the form of the s t r i ng which the
&ARGS d i rec t ive wi l l accept as a value of the arguments. CPL w i l l
check t h a t the type of the actual argument i s the same as the declared
type of the formal argument. A diagnostic i s produced i f a faul ty
argument i s found, and an error sever i ty code produced.

Arguments a re j u s t var iables and t h e i r values may be a l t e r ed j u s t l i k e
other var iab les ; the type i s not checked i f an argument i s assigned a
value using the SET_VAR command or the &SET_VAR d i r e c t i v e .

The types supported, and t h e i r system default values, a r e shown in
Table 13 -1 .

So, in the example above we might say:

&ARGS SOURCE:TREE; DEST:TREE; NOLINES:DEC

A va l id c a l l would be:

R X RICHS>EVAL.PL1 MY_SCURCE 50

HOW NULL STRINGS ARE HANDLED

The standard command processor w i l l remove a l l occurences of the
exp l i c i t nul l s t r i ng from a command l ine before executing i t . This
allows a user t o use omitted arguments on PRIMDS command l i n e s without
an e r ro r . For example, assume tha t a user defines an argument
f tn_args:

&ARGS OTHER_ARGS:CHAR; FTN_ARGS:REST

and tha t ftn_args i s going t o be used in t h i s l i n e :

FTN %CURRENT_FILE% %FTN_JARGS%

If the user has echoing enabled and omits FTN_ARGS from h i s invocation
of the CPL program (in order t o get the defaul t compiler opt ions) , he
wi l l see t h i s echoed a t h i s terminal:

FTN value_of_current_file ' '

The ' ' indicates t ha t f tn_args has been omitted and was assigned the
system default value; the command processor w i l l remove the ' ' before
executing the command.

13-3 Second Edition

DOC4302-190

Table 13-1
Argument Types Supported in CPL

Type

char

charl

tree

dec

oct

hex

entry

ptr

date

rest

unci

Default

11

11

11

0

0

0

1 1

7777/0

11

11

11

Description

Any character string up to 1024 characters long,
mapped to upper case

Any character string up to 1024 characters long,
no case shifting

A PRIMDS pathname up to 128 characters long

Decimal integer

Octal integer

Hexadecimal integer

File entryname up to 32 characters long

Virtual address in format "octal/octal"

Calendar date in the form "mm/dd/yy hh:mm:ss day"

The remainder of the command line

All tokens not accounted for by the &ARGS picture

Second Edition 13-4

ARGUMENTS

ARGUMENT DEFAULTS

Users may specify a defaul t value for each argument t o override the
system default values . If the argument i s omitted in the command l ine
used t o invoke the program, the default value i s assigned t o i t .
Defaults are specified by typing "=default" a f te r the declared type, or
after the colon i f type i s omitted; the type i s taken t o be char in
t ha t case. Continuing our example, we might declare defaul ts l i k e
t h i s :

&ARGS SOURCE:TREE; DEST:TREE=MY_UFD>MY_S0URCE.PL1; NOLINES:DEC=100

Typing:

R X RICHS>EVAL.PL1

would assign "RIO^EVAL.PLl" t o source and the defaul t values
"MY_UFD>MY_SCURCE.PL1" and "lOO" to dest and nolines respec t ive ly .

Default values may contain local var iable references. For example,
suppose the local var iable standard_ufd has the value "LAUREL>HARDY",
then the &ARGS d i r ec t i ve :

&ARGS OOMPILE_UFD:aiAR=%STANDARD_UFD%

would be transformed t o :

&ARGS COMPILE_UFD:CHAR=LAUREL>HARDY

and "laurel>hardy" would be assigned to compile_ufd i f no value i s
supplied on the command l i n e . Variable references used in defaul t may
be references t o other arguments in the same &ARGS d i r ec t i ve . So, we
could say:

&ARGS CCMPILE_uTD:(EAR=%STANDARD_UFD% ; OBJ_UFD:CHAR=%COMPILE_UFD%

which uses the value assigned t o argument compile_ufd as the defaul t
value of argument obj_ufd; t ha t i s , i f no value i s typed in for
obj_ufd on the command l i n e , i t defaults to be the same ufd as
compile_ufd. This construction i s possible because the &ARGS d i rec t ive
i s in te rpre ted f i r s t , and default values assigned second. Thus, if
references t o other argument var iables are used in defaul t , the value
used as the defaul t i s the value assigned t o tha t va r iab le a f te r the
&ARGS d i rec t ive has been in terpre ted .

Suppose a CPL program contains the statements:

&SET_VAR ARG_VAR : = ZYMURGY
&ARGS OTHER_ARG:CHAR=%ARG_VAR%; ARG_VAR:CHAR

13-5 Second Edition

DOC4302-190

The f i r s t of these two statements has no effect whatever. Since the
&ARGS d i rec t ive i s in terpreted before the defaul t values a re assigned,
the value used as the default of other_arg i s whatever value was given
t o arg_var in the command l i n e , not the s t r ing "zymurgy". Circular
references l i k e :

&ARGS OTHER_ARG:CHAR=%ARG_VAR%; ARG_VAR:Om=%OTHER_ARG%

are not permitted and give undefined r e s u l t s .

OPTION ARGUMENTS

Option arguments may be used t o make some or a l l of the arguments order
independent. They are used to identify a pa r t i cu la r argument or group
of arguments, or t o se lec t a specif ic program option; they are similar
to option arguments used in standard PRIM3S command l i n e s . For
example, in :

FTN A__PR0G.FTN -LISTING A_FROG.LIST -BINARY A_FR0G.BIN -DEBUG

- l i s t i n g and -binary are option arguments which identify the names of
the l i s t i n g and object f i l e s , respect ively; -debug i s an option
argument which se l ec t s a compiler option. Option argument names must
begin with a hyphen; the res t of the name may contain any character
which i s not a delimiter in the &ARGS d i rec t ive (blank, comma,
semicolon, colon, equal s ign) . For example, - l i s t i n g , -no_binary.

Note

Names of option arguments must contain at least one alphabetic
character. Numeric names for option arguments (e.g., -123) are
illegal, as they may be mistaken for negative integers.

An important restriction to remember is that in the &APGS directive any
object arguments (that is, positional arguments) must precede any
option arguments used. This restriction does not apply to the command
line being parsed.

Switches

The simplest option argument is a switch that is either present on the
command line or not. A switch is used to select a specific program
option (the -debug option in the ftn invocation above is an example of
a switch). A switch is declared by:

&ARGS flag-var:name-list

Second Edition 13-6

ARGUMENTS

name-list i s a l i s t of one or more option argument names separated by
commas. The addi t ional names are commonly used to provide short
synonyms, as i n :

&ARGS LIST_SW:-LISTING, -L

flag-yar i s the name of a loca l var iable which w i l l be s e t t o the f i r s t
name in the name-list of the option argument i f any of the names in
name-list appear on the command l i n e . I t w i l l be s e t t o the nu l l
s t r ing ' ' i f none of the names appear. In the above example, if
" - l i s t i n g " or " - 1 " appears on the command l i n e , l i s t_sw i s s e t to
"-LISTTNG"; i t i s s e t t o " if nei ther appears.

Flags

The def in i t ion of an option argument may specify one or more arguments
t ha t w i l l follow the option argument on the command l i n e . In t h i s
case, the option argument ac t s as a f lag which s ignals the presence of
the argument group on the command l i n e . Since the f l ag i den t i f i e s the
group, the group's posi t ion on the command l i ne i s independent of the
posi t ion of i t s declarat ion in the corresponding &ARGS d i r ec t ive .
Within a group flagged by one option argument, however, the arguments
are posi t ion dependent. So, a program compile_and_go might have the
statement:

&ARGS LIST_SW: -LISTING, -L LIST_FILE:TREE;~
EXECLSW: -EXECUTE, -E OBJ_FILE:TREE; LIBRARY:CHAR

This statement declares three arguments: a l i s t i n g f i l e " l i s t _ f i l e " ,
which i s flagged by e i the r " - l i s t i n g " or " - 1 " ; and a binary f i l e
"obj_file" and a library-name " l ibrary" , both of which a re flagged by
ei ther "-execute" or " - e " . Valid c a l l s on compile_and_go a r e :

R GOMPILE_JfiND_GO -EXECUTE RICHS>NEW_OBJ PLPLIB -L RICHS>NEW_LIST

R COMPILE_AND_GO -L RICH>NEW_LIST -E RICHS>NEW_OBJ PLPLIB

While l i s t _ f i l e and the pa i r of arguments obj_f i le and l i b r a r y may be
f i r s t or l a s t on the command l i n e , obj_f i le and l i b r a ry must appear in
tha t order a f te r t h e i r f l ag . As in a simple switch, flag_var i s s e t t o
the f i r s t name in name_list i f the control argument appears on the
command l i n e .

Continuing our example with program X, we might now say:

&ARGS ORIG_FILE:-SOURCE,-S SOURCE:TREE;~
DEST_FILE: -DEST, -D DEST: TREE=MY_UFD>MY_SCURCE. PLl; ~
LINES: -LINES, -L N0LINES:DEO100

Notice the power of t h i s brief statement. We have defined th ree
arguments: source, des t , and nol ines . source must be a pathname; the
actual argument on the command l ine corresponding t o source i s flagged

13-7 Second Edition

DOC4302-190

by being preceded by either "-source" or n-s". dest must also be a
pathname; the actual argument is flagged by either "-dest" or "-d"r
and defaults to "my_ufd>my_source.pll". nolines must be a decimal
integer, is flagged by "-lines" or "-1", and will be assigned the value
"100" if it is omitted. In addition, the variable orig_file is
assigned "-SOURCE" if that argument is present; similarly, dest_file
is assigned "-DEST" and lines assigned "-LINES", if those arguments are
present. A call on program X might now look like:

R X -D HIS_UFD>HIS_SOURCE -S RICHS>EVAL.PL1

Another example:

&ARGS SOURCE :TREE; LIST_FLA3:-L3ST,-L LIST_FILE: TREE;~
FROM:-FROM FROM_S: DEC = 1 FROM_E: DE09999

The command:

R X MYFILE -FROM 6 -L MYFILE.LIST

re su l t s in the values:

%SOURCE% = "MYFILE"
%LIST_FLfl3% = "-LIST"
%LIST_FILE% = "MYFILE.LIST"
%FROM% = "-FROM"
%FROM_S% = " 6 "
%FROM_E% = " 9 9 9 9 "

REST AND UNCL DATA TYPES

The res t and unci types are useful when the user wants CPL to i n t e rp re t
some arguments and take whatever else i s on the command l ine (after
var iable references and function c a l l s have been evaluated) as i s .
Consider the following CPL procedure, run_ftn.cpl:

&ARGS FTtORGS:REST
FTN MUMBLE %FTKLARGS%

typing:

r run_ftn - l i s t steveOmumble. l i s t

assigns " - l i s t steveOmumble.list" to f tn_args. Note tha t no case
mapping occurs for a r e s t type argument.

Second Edition 13-8

ARGUMENTS

Another example:

&ARGS DIR:TREE; DEEP:-DEPTH; LIM_F:-LIMIT,-LIM LIM_V:DEC;~
Ol_F:K30M_LINE,-CL CL_V:REST

when given the command line:

command -LIM 50 ABODEF -DEPTH -CL LS -SORT_DIM -LONG

causes dir to be set to "ABODEF", deep to "-DEPTH", lim_f to "-LIMIT",
lim_v to "50", cl_f to "-G0M_LINE", and cl_v to "LS -S0RT_DIM -LONG".

The parsing of the command line stops when a rest type argument is
encountered in the picture; whatever remains on the command line is
assigned to the rest argument. This means that only one rest type
argument may appear among the object arguments, and it should be the
rightmost of these; if there are no rest type object arguments, one or
more option arguments may have a rest type as the rightmost of their
positional arguments. Furthermore, all characters that are to be
assigned to a rest argument must appear last in the command line; some
order dependence has been introduced.

An unci argument in the &ARGS picture does not stop the parsing of the
command line. The parsing continues, and any tokens not assigned to an
argument when the parse ends are concatenated and assigned to the unci
argument rather than causing an error. If an option argument that is
not in the &ARGS picture is encountered, all arguments between it and
the next option argument or the end of line are assumed to belong to
the first option argument. For example:

&ARGS UNCLAIMED:UNCL; FNL:-FUNNY_LIST,-FYL

when given the command line:

command source -b source.bin -dynm -funny_list -limit 26

causes variable fnl to be set to "-funny_list", and variable unclaimed
to be set to "source -b source.bin -dynm -limit 26". Note that no case
mapping occurs for arguments of type unci.

Caution should be used when arguments are declared to be type unci.
The unci type does not ensure order independence. Suppose run_ftn were
to take two arguments, ftn_args and another_arg, and we use this &ARGS
directive:

&ARGS ANOTHER_ARG:OCTAL; FTN_J\RGS :UNCL

13-9 Second Edition

DOC4302-190

Typing:

r ftn_args 777 -list steveOmumble. list

assigns "777" to another_arg and "-list steveOmumble.list" to
ftn_args. However,

r ftn_args -list steveOmumble. list 777

assigns "-list steveOmumble. list 777" to ftn_args (since everything
between an undeclared option argument and the next option argument, or
the end of the line, is assigned to the unci argument), and "0" to
another_arg (the default for numeric types which are emitted from the
command line).

Only one instance of the unci type may appear in an &ARGS directive.
An argument flagged by a option argument may not have type unci.

Second Edition 13-10

14
Writing

Subroutines and
Functions in GPL

INTRODUCTION

CPL programs may contain in te rna l "rout ines" . These are equivalent t o
subroutines or in te rna l procedures in high-level languages. The f i r s t
par t of t h i s chapter explains the construction, invocation and
execution of CPL rout ines . Chapter 15 explains how t o use routines for
error handling and condition handling.

CPL programs may a lso contain user-defined functions. The l a s t pa r t of
t h i s chapter explains how to wr i t e and invoke functions.

A Note on Terminology

In PL/If any program or subroutine i s cal led a procedure. A program i s
an external procedure. The subroutines i t contains a re in te rna l
procedures. And the main program, minus i t s subroutines, i s the main
procedure? This terminology i s diagrammed below.

14-1 Second Edition

DOC4302-190

&ARGS WHAT

&CALL A

&RETURN
&ROUTINE A

\

MAIN PROCEDURE

&RETURN

EXTERNAL PROCEDURE

INTERNAL PROCEDURE

In t h i s guide, we use the term routine when we refer t o a CPL rout ine.
(For example, we say tha t every routine begins with a &ROUTINE
d i rec t ive .) We use the term procedure when we refer t o a
main-or- internal-or-external procedure. (For example, we say tha t a
&RETURN di rec t ive causes a procedure t o return t o i t s c a l l e r . This
statement i s equally t rue for in ternal and external procedures.)

WRITING ROUTINES

Routines in CPL are intended primarily for error handling and condition
handling. However, they may be used for any purpose for which
subroutines a re used in high-level languages. For example:

• A routine might replace a lengthy &DO group following a &THEN,
&ELSE, or &WHEN. The routine c a l l i t s e l f would then be the
argument of the &THEN, &ELSE, or SWHEN di rec t ive (for example,
&THEN &CALL R0UTINE_A) .

• A routine may be used when one operation must be performed
several times during the course of a program. The routine can
thus be wri t ten once, and c a l l s t o the routine placed a t a l l the
points where the routine i s needed.

How Routines Operate

Routines in CPL operate under the following ru l e s :

• They begin with the d i rec t ive :

&ROUTINE routine_label

Second Edition 14-2

SUBROUTINES AND FUNCTIONS

• They are invoked with the d i r ec t i ve :

&CALL routine_label

For example:

&CALL STARTUP

&ROUTINE STARTUP

• They may be invoked only by the CPL f i l e within which they ex is t

• They are ended by e i t h e r :

— A &RETURN d i rec t ive

•— A &STOP d i r ec t ive

— A nonlocal &GOTO (that i s , a &GOTO to a label t h a t i s
defined outside the routine containing the &GOTO)

• They are physical ly terminated by:

— The presence of another &ROUTINE d i rec t ive (s ignal l ing
the s t a r t of another routine)

— The end of the CPL f i l e

• They use whatever var iables the main CPL procedure has defined.
They do NDT crea te t h e i r own copies of these va r i ab l e s . Rather,
they act d i r ec t l y on the main procedure's copy. Thus i f a CPL
program contained the following code:

&S NUMBER := 10
&CALL DOUBLE
TYPE %NUMBER%
&RETURN
&ROUTINE DOUBLE
&SET_VAR NUMBER := %NUMBER% * 2
&RETURN

then the program, when invoked, would type the number 20.

• They have the i r own SeDEBUG, &SEVERITY, &CHECK and &EXPAND
s e t t i n g s . If a routine does not s e t these d i rec t ives
e x p l i c i t l y , then the d i rec t ives a re se t t o t h e i r defaul t values
when the routine i s entered.

Vftien control re turns t o the main procedure, the d i r ec t i ve values
are r e - s e t t o whatever values were se t by the main procedure.

14-3 Second Edition

DOC4302-190

Placement of Routines

Routines cease executing when they meet a &RETJRN or a &STOP directive.
However, they do not physically end until they encounter another
&ROUTINE directive (signalling the start of the next routine), or the
physical end of the CPL file.

A CPL program must not encounter a &ROUTINE directive during normal
execution. Routines may be entered only;

• By the &CALL directive

• By execution of the error-handling directives, &GN, &CHECK, or
&HANDLER

If a CPL program does encounter a &ROUTINE directive during normal
execution, execution terminates with an error message.

The best place to put CPL routines, therefore, is at the end of the CPL
file, following the main procedure. For example:

/* main routine begins here

SCALL RCUTINEJ.
&CALL RCUTINE_2

&RETCJRN
&RCUTINE ROUTINE 1

/* end of main program
/* begin first routine

&RETCJRN
&RCUTINE RCUTINE_2

/* f i r s t routine ends
/* begin second routine

SRETURN /* second routine ends

Second Edition 14-4

SUBROUTINES AND FUNCTIONS

I t i s p o s s i b l e t o p l a c e a r o u t i n e i n t h e middle of a CPL f i l e . I f you
do s o , however, your program must &GOTO around t h e r o u t i n e . For
example:

&GOTO SKIP_ROUTINE
&ROUTINE CUT OF PLACE

&RETURN
&LABEL SKIP_ROUTINE

This i s n e i t h e r r e a d a b l e nor e f f i c i e n t code. We do n o t recommend i t s
u se .

Note

You may leave a routine and enter your main program via a
&GOTO, but you may not enter a routine via a &GOTO from the
main procedure. Entering a routine via a &GOTO causes an
error, and terminates execution of the CPL program.

Nesting Routines

Internal procedures may call other internal procedures. An example of
this would be:

&CALL A

&RETURN
&ROUTINE A

&CALL B
&RETJRN

&ROUTINE B

&RETCJRN

14-5 Second Edition

DOC4302-190

Ending Routines: The &RETJRN and &STOP Directives

There are two ways in which you may want t o terminate subroutines:

• If the routine performs correc t ly , you usually want i t t o return
control t o the main CPL program, so t ha t t ha t program can
continue i t s execution. This i s performed by the &RETURN
d i rec t ive .

• If the routine f a i l s , or if the routine was ca l led because an
error occurred in the main program, you may want the routine to
abort execution of the main program and return control t o the
main program's ca l l e r . This i s done with the &STOP d i r ec t i ve .

The &STOP Direct ive: The &STOP di rec t ive has the same format as the
&RETURN d i rec t ive . This i s shown in Table 14-1 .

If the &STOP di rec t ive i s used in a main procedure, i t ac t s j u s t l i k e
the &RETURN d i rec t ive . However, if the &ST0P d i rec t ive i s used in an
in terna l routine, i t ha l t s execution of the e n t i r e CPL program, and
re turns control t o the program's c a l l e r . Here i s a t r i v i a l example
tha t shows the &STOP and &RET0RN di rec t ives used in a rout ine:

&ARGS A
&CALL CHECKUP
TYPE A = %A%
&RET0RN
&RCUTINE CHECKUP

&IF %A% < 20 &THEN &RET0RN &MESSAGE Arg A acceptable
&ELSE &STOP &MESSAGE Argument A too l a rge .

If the value of A in t h i s example i s l e s s than 20, the &RETURN
di rec t ive p r in t s the message "Arg A acceptable". The TYPE command then
p r in t s the value of A.

If the value of A i s greater than 20, the &STOP d i rec t ive p r in t s the
message "Argument A too la rge" . The &STOP d i rec t ive a lso h a l t s
execution of the main CPL program. Therefore, the TYPE command i s not
executed. Instead, control returns to the main program's "ca l l e r " :
tha t i s , e i ther the user (if the user had invoked the stopped program)
or whatever CPL program had invoked the program and passed argument A
to i t .

Second Edition 14-6

SUBROUTINES £ND FUNCTIONS

Table 14-1
Forms of the &RETJRN and &STOP Directives

Directive Action

&RETJRN

&STOP

&RETURN &MESSAGE t e x t
&STOP &MESSAGE t e x t

Halts execution of procedure in
which i t occurs. Returns
control t o procedure 's c a l l e r .

Halts execution of procedure in
which i t occurs. If t h i s
procedure i s a rout ine , &STOP
also h a l t s execution of the
program containing the routine
and of any other rout ines tha t
program may have ac t ive .
Control re turns to the main
program's c a l l e r .

Halts execution, as above.
Pr in ts t ex t on u s e r ' s terminal
(and wri tes i t in to command
output f i l e s) when control
re turns .

&RETURN sever i ty {&MESSAGE text}
&STOP sever i ty {&MESSAGE text}

Halts execution, as above.
Returns sever i ty code t o
c a l l e r . If &MESSAGE d i rec t ive
i s included, p r in t s t ex t a t
terminal and wri tes i t in to
command output f i l e s .

14-7 Second Edition

DOC4302-190

WRITING FUNCTIONS IN CPL

Users may define the i r own functions by writ ing a CPL program and
invoking i t via a function c a l l . The format of such a function c a l l
i s :

[RESUME program-name a r g - l i s t]

When a CPL program encounters such a function c a l l , i t executes program
program-name, passing i t the arguments in a r g - l i s t .

A program invoked as a function must contain a &RESULT d i r ec t i ve . I t s
format i s :

&RESULT expression

expression i s evaluated and returned as the value of the function,
replacing "the function c a l l in the t ex t of the ca l l ing program.

An Example

Here is a trivial program named DOUBLE.CPL:

&ARGS X: dec
&RESULT %X% * 2
&RETURN

DOUBLE could be invoked by the following statement:

&S A := [RESUME DOUBLE 5]

DOUBLE would take the integer "5" as its argument, double it, and
return the integer "10". Variable A (in the calling program) would
then be set to the value "10".

Using the &RESULT Directive

A CPL procedure may have more than one &RESULT directive; the last one
encountered before the procedure executes a &RETJRN or &STOP directive
will be the function's value. If no &RESULT directive is executed, the
value of the function is the null string, »*.

If a CPL procedure is not invoked as a function (that is, if the
invocation is not enclosed within function call brackets) executing a
&RESULT directive is an error.

Second Edition 14-8

15
Error and Condition

Handling in GPL

INTRODUCTION

This chapter discusses:

• Error handling in CPL

• How CPL programs and rout ines can pass sever i ty codes t o each
other

• Condition handling in CPL

• The use of routines for error-handling in CPL

ERROR HANDLING

Each executed PRIMDS command produces an error code known as a sever i ty
code. Severity codes may take one of three values, as shown in the
tab le below. After a PRIMDS command i s executed, the sever i ty code i t
produces i s avai lable in the system-defined local va r iab le , SEVERITY.

Code Meaning

0 No error
Posi t ive integer Error
Negative integer Warning

15-1 Second Edition

DOC4302-190

Note

The user should never define SEVERITY $ as a variable himself.
Doing so will interfere with CPL's ability to handle errors.

How CPL Handles Errors

When a CPL program is executing, the CPL interpreter checks the value
of SEVERITY following the execution of each PRIMDS command (and
following the execution of the &ARGS directive, as well). If SEVERIT¥$
has a value greater than zero, and the CPL program has not defined its
own error-handling parameters, the CPL interpreter terminates execution
of the CPL program.

How CPL Programs Can Handle Errors

CPL programs can define their own error-handling in four ways:

• They can use the &SEVERI1Y directive to modify the CPL
interpreter's response to severity codes

• They can use the &CHECK directive to define their own error
conditions

• They can use the &RCUTINE directive (in connection with either
the &CHECK or the &SEVERITY directive) to define error-handling
subroutines

• They can test the value of SEVERITY$ at some specific point in
the program by using an IF statement (for example, "&IF
%SEVERI1Y$% > 0 ...")

&SEVERIIY handling takes precedence over &CHECK handling. If the
execution of a PRliyDS command activates both a &SEVEPJ0Y handler and a
&CHECK handler, the &SEVERITY handler is invoked first. If the
&SEVERI1Y handler returns (that is, if it does not execute a &STOP
directive or a &GOTO), the &CHECK handler is executed.

The operation of the &SEVERITY directive and the &CHECK directive are
explained below.

Second Edition 15-2

ERROR AND CONDITION HANDLING

• &SEVERITY - SPECIFY SEVERITY HANDLING

Syntax: &SEVERITY {level action}

where level is any of:

&ERROR
&WARNING

and action is any of:

&FAIL
&IGNORE
&ROUTINE handler_label

Example: &SEVERITY &ERROR &ROUTINE ERROR_HAPPENED

This directive is provided as a convenience, since checking the value
of SEVERITY$ and taking corrective action accordingly is expected to be
a common operation. The statement is a shorthand for a &CHECK
statement which checks the value of SEVERITY$.

The action clause specifies what is to be done if a severity code as
bad as or worse than level is ever produced. If action is &FAIL,
execution is terminated, and a positive severity code is returned to
the caller of this CPL procedure. If action is &IGNORE, execution
continues. If action is "&ROUTINE handler_label", CPL will invoke
that error-handling routine. (Handlers are discussed under CONDITION
HANDLING, later in this chapter.) handler_label must evaluate to a
routine label.

If specified, level must be &ERROR or SWARNING. If level is omitted,
action also must be omitted. Automatic severity handling is then
disabled. Hence, typing just &SEVERITY is equivalent to &SEVERITY
SWARNING &IGNORE: in other words, ignore all errors.

If the handler ends normally or executes a SRETdRN statement, control
passes to the statement following the one that caused the handler to be
invoked. The only exception to this is the case when a &CHECK handler
has been declared and the check expression evaluates to "TRUE". In
this case, the check handler will be invoked after the &SEVERITY
handler returns (if it does return), and before control returns to the
next statement in the sequence.

15-3 Second Edition

DOC4302-190

• &CHECK - INVOKE A HANDLER IF A GIVEN EXPRESSION IS TRUE

Syntax: &CHECK expression &ROUTINE handler

Example: &CHECK %THIS_VAR% > %IHAT_VAR% &ROUTINE DISASTER

After each PRIMOS command i s executed the expression expression i s
evaluated. If the expression i s t rue , the specified handler i s
invoked; otherwise, no action i s taken.

If the handler ends normally or executes a &RET0RN d i r ec t ive , control
passes to the statement following the one tha t caused the invocation.

If a PRIMOS command generates a severi ty code and causes a check
expression t o become "TRUE", and both a check handler and a sever i ty
handler ex i s t , then the severi ty handler i s always invoked f i r s t ; if
tha t handler re turns , the check handler w i l l be invoked. Suppose a CPL
program contains the statements:

&CHECK %THIS% > %THAT% &ROUTINE IT_WAS_GREATER
&SEVERITY &ERROR &ROUTINE ERROR_HAPPENED

I f a PRIMOS command causes a p o s i t i v e s e v e r i t y code t o be r e t u r n e d , and
also causes var iable t h i s t o become greater than var iab le t ha t , then
the handler error_happened wi l l be invoked before the check handler.
Tf error Jiappened re turns , the handler it_was_greater w i l l be invoked.
If t h a t handler re turns , control wi l l pass t o the statement following
the one tha t caused the invocations.

PASSING SEVERITY POPES

Assume a CPL program tha t runs several other CPL programs. I t s
construction might look l ike t h i s :

RESUME TASK1.CPL
RESUME TASK2.CPL
RESUME TASK3.CPL

Assume also t h a t you would l i ke t h i s program t o know whether each of
the programs i t runs executes correct ly , or whether t h e i r execution ran
in to problems. You would do t h i s by having the three programs (or
whatever error-handling routines they defined) re turn a sever i ty code
as par t of the &RETURN or &STOP d i rec t ive with which they end. The
format of these two d i rec t ives , when used t o return sever i ty codes, i s
as follows:

Second Edition 15-4

ERROR AND CONDITION HANDLING

^ &RETORN

Syntax: &RETURN severity {&MESSAGE text}

Example: &return 1

severity must evaluate to a string convertible to an integer. This
integer is returned to the invoker as a severity (error) code. If
severity is omitted, "0" is returned. The point of return is
determined as in the simple SRETURN discussed in Chapter 2.

If the &MESSAGE clause is present, text is printed at the user's
terminal. (See a further discussion of &RETURN in Chapter 14.)

Note

When you define your own value for SEVERITY (as you do with
this directive), you may assign it whatever integer value you
please, and test for that value.

When you test for a system-supplied value for SEVERITY$,
however, you should not test for a specific integer. Rather,
the test should be:

• 0, for no error

• > 0, for an error

• < 0, for a warning

• &STOP

Syntax: &STOP {severity} {&MESSAGE text}

Example: &STOP 1 &MESSAGE wrong, Wrong WRONG!

The &STOP directive

• Is processed like the &RETURN directive if it occurs in a main
CPL program

• Halts both the routine in which it occurs and the procedure that
invoked the routine, if it occurs within a routine.

The &STOP directive is explained more fully in the discussion of
routines in Chapter 14.

15-5 Second Edition

DOC4302-190

CONDITION HANDLING

CPL provides an interface to the FRIM3S condition mechanism. This
mechanism i s useful for handling exceptional condit ions. Some
fami l ia r i ty with the PRltOS condition mechanism i s assumed. (See The
Prime User 's Guide for an introduction to the FRIPDS condition
mechanism.)

An on_unit i s a procedure which i s cal led only when some special
condition i s ra i sed . Since on-units can be complicated, CPL provides
one for the user, and also makes i t possible for the user t o define
simpler procedures cal led handlers. A handler i s a &EOUTINE (as
described l a t e r in t h i s chapter) which has been declared as a condition
handler by a &CHECK, ScSEVERITiT, or SON d i rec t ive (described below).
When a handler i s declared, i t s name and the name of the condition i t
w i l l handle are saved by the CPL in t e rp re t e r . When a condition i s
ra ised, CPL's on-unit i s invoked; i t examines CPL's l i s t of handlers.
If i t f inds a handler for the condition, the handler i s executed. When
the handler re turns , CPL's on-unit re turns to the point of
in te r rupt ion . If no handler i s found, the PRIKOS condition mechanism
i s ins t ruc ted to continue i t s search of the stack for other on-units
(which may or may not belong t o another CPL invocat ion) .

Information in the condition stack frame i s avai lable through the
CND_INPO command function. (See Chapter 12.)

Because of the overhead involved in searching the stack for a handler,
s ignal l ing a condition i s expensive. Therefore, condition handling
should be reserved for unusual or unlikely events. (I t i s not
expensive merely to declare a handler with the SON d i rec t ive .)

• SON - DEFINE A HANDLER FOR A CONDITION

Syntax: SON condition StEOUTINE handler_label

Example: SON bad_input &R0UTINE bad_inp_handler

This statement defines a handler handler_label for condition.
handler label and condition must evaluate t o a routine labe l and an
iden t i f i e r , respect ively, condition may be one of the predefined
PRIMOS conditions (described in the FRIPDS Subroutines Reference Guide)
or one invented by the user. If the condition i s ra i sed , and the
handler has not been reverted (see below), the handler i s executed.
(User-defined conditions are raised by using the StSIGNAL d i rec t ive ,
explained below.)

handlerJLabel must be defined by a ScRDUTINE d i rec t ive elsewhere in the
CPL program; i t may not be defined by a StLABEL d i r ec t ive . If the end
of the handler i s reached or i f SeRETURN i s executed, control re turns to
the FRIMOS condition mechanism. If the handler executes a nonlocal
SGOTO to a label outside i t s e l f , the invocation of CPL in which the
handler was defined i s returned t o (the stack i s unwound i f necessary),

Second Edition 15-6

ERROR AND GONDITIDN HANDLING

and then the goto is executed. This aborts the command that raised the
condition. A label is defined as being outside if it occurs earlier in
the file than the &ROUTINE directive in question.

• &REVERT

Syntax: &REVERT condition

Example: &REVERT bad_input

The expression condition must evaluate to an i d e n t i f i e r . The CPL
program's handler for condition, if any, i s reverted (cancel led) .

^ &ROUTINE - DESIGNATE START OF A ROUTINE

Syntax: &ROUTINE routine_label

Example: &ROUTINE my_routine

This d i r ec t ive i den t i f i e s the code t ha t follows as an in te rna l rout ine .
The &ROUTINE code i s terminated by another &ROUTINE d i rec t ive
(indicating the beginning of another in terna l routine) or by the end of
the CPL f i l e . &ROUTINE may not define the s t a r t of a routine to be
inside any statement group (&D0, &SELECT, &DATA). &ROUTINE cannot be
executed condi t ional ly ; t ha t i s , i t may not be used ins ide an &IF or
&ELSE statement.

Any routine may be invoked d i rec t ly by using the &CALL d i rec t ive
(explained in Chapter 14). If the routine i s declared as a condition
handler by a &CHECK, &SEVERITY, or &ON d i r ec t ive , i t may a lso be
invoked by ra i s ing the condition i t i s intended t o handle.

Internal routines may not be "fal len i n to" , or entered by a &GOTO. If
the &ROUTINE d i rec t ive i s encountered during the normal execution of a
CPL program, a f a t a l error occurs and execution of the program i s
terminated.

Execution of a routine terminates when i t executes a &RETGRN or &STOP
d i rec t ive , or when i t executes a nonlocal &GOTO. A &GOTO i s nonlocal
if i t i s t o a l abe l which appears i n the CPL f i l e before the &ROUTINE
containing the &GOTO.

15-7 Second Edition

DOC4302-190

^ &SIGNAL - RAISE A CONDITION

Syntax: &SIGNAL condition {&NO_J*ETORN}

Example: &SIGNAL bad_input

This d i rec t ive ra i ses the condition condition and causes the CPL
condition mechanism to search for a handler for t h a t condition. The
expression condition must evaluate to an i d e n t i f i e r .

If there i s no handler for condition in the CPL program, the PRIMDS
condition mechanism wi l l continue searching the u s e r ' s stack for
on-uni ts . If the user has wri t ten no on-uni ts , PRlMDS's own condition
handling w i l l be invoked.

&NOJREHJEN may be omitted. If specified (as in "&SIGNAL bad_input
&N0_RETURN"), then i t i s an error for the handler t o re turn ; execution
must be aborted using the &STOP di rec t ive or a nonlocal &G0T0.

Second Edition 15-8

A
Syntax Summary

^ &ARGS

Syntax: &ARGS {name{:{type}{=default} }...}~
{name: -control_list{ name{:{type}{=default} };...} }

Types: CHAR, CHARL, TREE, ENTRY, DEC, OCT, HEX, FTR,
DATE, REST, UNCL

Examples: &args truth; beauty; charm

&args truth:dec; beauty:tree=a_ufd>file; charm:char

&args charm:char; tr_flag:-tr truth:dec;~

be_flag:-be beauty:tree=a_ufd>file I

• &CALL

Syntax: &CALL routine_name

Example: &call this_routine

fcroutine this routine

A-l Second Edition

DOC4302-190

• &CHECK

Syntax: &CHECK expr SROUTINE handler

Example: Scheck %this_var%>%that_var% sroutine d i sas t e r

• SDATA

Syntax: SDATA stmt
data 1
• • •

data n
SEND

Example: Sdata seg
vl tprog
Sif %debugger_used%~
Sthen lo *>bin>new_prog.bin.dbg
&else lo *>bin>new_prog.bin

Send

^ &DEBUG

Syntax: SDEBUG option_list

Options: &ON SOFF SECHO SNO_ECHO SEXECUTE SNO_EXECUTE SWATCH &N0JWATCH

Example: Sdebug Secho all Swatch beserkjvar

• SDO

Syntax: SDO {iteration}
stmt
stmt

•
•

stmt
SEND

where i t e r a t i o n i s any one of:

1 . nul l (statement grouping)

2. {SWHILE while} {SUNTIL unt i l}

3 . var := s t a r t {STO to} {SBY by} ~
{SWHILE while} {SUNTIL unt i l}

Second Edition A-2

SYNTAX SUMMARY

4. var &LIST l i s t {&WHILE while} {&UNTIL unt i l}

5 . var &ITEMS items {&WHILE while} {&UNTIL un t i l }

6. var := s t a r t &REPEAT repeat ~
{&WHILE while} {&UNTIL un t i l}

Examples: &do i := 1 &to 3
f tn abc%i%.ftn

&end

&do &while [null %a%]

&do &until [null %a%]

&do a := 5 &to 10

&do a := 5 &to 10 &by 2

&do a := 5 &by 2 &to 10

&do a := 5 &to 10 Swhile [null %a_string%]

&do a := 5 &to 10 Suntil [null %a_string%]

&do a Stlist %list_of_names%

&do a &items [wild a_ufd>@@.pll - s i ng l e un i t]

&do a := 6 Srepeat %a% * %a_constant%

&do a := - 6 &to - 100 &by - 2

&do a := - 1 &repeat %a% * - 1 &until [length %a_string%] > 10

^ &EXPAND

Syntax: &EXPAND (ON \
JOFFJ

Example: &expand on

^ &G0TO

Syntax: &G0T0 label

Example: &goto a_label

A-3 Second Edition

DOC4302-190

^ &IF-&THEN-&ELSE

Syntax: &IF t e s t &THEN true_stmt
{&ELSE false_stmt}

Example: &if %i% > 5 &then type i = %i%

• &LABEL

Syntax: StLABEL label_name
stmt

Example: &label a_label
attach richs

• &ON

Syntax: &ON condition &ROUTINE handler_label

Example: Son bad_input &routine bad_input_handler

• &RESULT

Syntax: &RESULT expr

Example: &result 4 * 6

^ &RETURN

Syntax: &RETURN {severity} {&MESSAGE text}

Examples: &return
&return 1
&return %severity$%
Sreturn &message HelloI
&return 1 fcmessage Oops

Second Edition A-4

SYNTAX SUMMARY

• &REVERT

Syntax: &REVERT condition

Example: &revert bad_input

• &ROUTINE

Syntax: &ROUTINE handler_name

Example: &routine bad_inp_handler

^ &SELECT

Syntax: &SELECT expr
&WHEN exprl {,expr2,expr3,
stmt
&WHEN exprl {,expr2,expr3,
stmt

. ,exprn}

. ,exprn}

{&OTHEIWISE
stmt}

SEND

Example: fcselect %what_to_do%
&when abc
a t t ach r i chs
&when 6,%one_var% + %two_var%
&return
sotherwise
resume not_one_of_those.cpl

Send

^ &SET_VAR

Syntax: &S{ET_VAR} var l {, var2, . . . , varN} := value}

Examples: &set_var this_var := th i s_s t r ing

&s this_var := th i s_s t r ing

&s a,b,c := 0

A-5 Second Edition

&ERROR
&WARNING

__ —|
&FAIL
&IGNORE
&ROUTINE label

DOC4302-190

^ &SEVERITY

Syntax: &SEVERITY

Examples: fcseverity &warning Sdgnore
&severity &error &routine f i x_ i t
^severity fcerror &fail
&severity

^ &SIGNAL

Syntax: &SIGNAL condition {&NCLRETORN}

Example: fcsignal bad_bug &no_return

• &ST0P

Syntax: &ST0P {severity} {&MESSAGE text}

Example: &stop 1 smessage wrong, Wrong, WRONG!

Second Edition A-6

B
GPL

Error Messages

INTRODUCTION

When an error occurs in a CPL program, the CPL interpreter prints out
four items of information:

1. A line of text giving

• the error number.

• the line number in the CPL program in which the error
occurred.

• if the errant text itself cannot be printed, the last token
(that is, the last word or operator) read before the error
occurred.

2. A full error message. If the error-causing text can be printed,
it will be part of the message.

3. The text of the line of source code in which the error occurred.

4. A line describing the action taken by the CPL interpreter and
giving the name of the program in which the error occurred. For
example:

B-l Second Edition

DOC4302-190

OK, r blunder

CPL ERROR 40 ON LINE 2.
A reference to the undefined variable "FILLNAME" has been found
in this statement.

SOURCE: como %fillname%.como

Execution of procedure terminated. BLUNDER (cpl)
ER!

In this example, program BLUNDER.CPL contained a misprint, FILLNAME,
for the variable, FILENAME.

The rest of this appendix contains a list of CPL error messages. The
term text marks the spot in a message where erroneous text from the
running program is printed. Messages are given in order by number.

ERROR MESSAGES

1 An error was encountered while attempting to read the source text
of the procedure.

2 The token "text" was found where the keyword &THEN was expected.
All &IF directives must contain a &THEN clause.

3 The keyword."&THEN" may only be used in the "&IF" directive.

4 The "&ELSE" directive may only be used as the directive
immediately following an "&IF" directive.

5 The value "text" is not a number, but is used where a number is
expected.

6 This "ScEND" directive could not be matched with a corresponding
"&DO", "&DATA", or "StSELECT" directive.

7 Internal CPL error: the value of the loop control variable "text"
for this iterative "&DO" loop could not be retrieved. Please
contact your system administrator.

8 The value "text" is not Boolean (true/false), but is used where a
Boolean value was expected.

9 The value "text" is not a legal variable name, but is used where
one is expected.

10 The value "text" is not a valid statement label, or else a &GOTO
directive has been used to transfer control to this routine.

11 A syntax error was found in this &ARGS directive.

Second Edition B-2

CPL ERROR MESSAGES

13 Internal CPL error: the semantic stack has been overpopped.
Please contact your system administrator.

14 The value of the SWHILE expression "text" in this &D0 loop is not
Boolean (true/false) as expected.

15 An unexpected problem was encountered while attempting to access
the value of the variable "text" in this statement. Possible
internal CPL error; please contact your system administrator.

16 A syntax error was found in a command function reference in this
statement.

17 Internal CPL error: an unexpected error occurred while attempting
to set the value of variable "text" in this statement. Please
contact your system administrator.

18 The numeric value "text" used in this directive exceeds the value
range limits of that directive.

19 The token "text" was found where the keyword "&ROUTINE" was
expected.

20 The procedure has referenced the global variable "text", but
global variables have not been enabled in this process.

21 An unexpected error occurred while attempting to set or get the
value of the global variable "text". Check the global variables
file for possible damage, accidental deletion, or lack of Write
access.

22 The token "text" is unrecognized or appears in this iterative
"&DO" directive in an unexpected place. This directive contains
one or more illegal, duplicate, or out-of-order clauses.

23 The value "text" is not a valid routine name, or is a statement
label used where a routine name was expected. A label may not be
used as a condition, severity, or check routine.

24 Flow of control has dropped into the routine "text". Control may
be transferred to a routine only by means of a condition,
severity, or check routine invocation.

25 The CPL expression "text" contains a non-numeric value where a
numeric value was required, or an illegal combination of operators
and/or values.

26 This directive ends before the appearance of one or more required
clauses.

27 The text "text" follows the logical end of this statement.

28 The token "text" was found where one of the keywords &ERROR,
&WARNING, &ROUTINE, &FATL, or &IGNORE was expected.

B-3 Second Edition

DOC4302-190

29 The value of the check expression of the currently enabled check
routine is "text", which is not Boolean (true/false) as expected.

30 The token "text" was found where the keyword ":=" was expected.

31 The &DATA directive may not be nested.

32 An unexpected error was encountered while operating on the
temporary file containing the data from this &E&TA block. Check
for insufficient access rights, disk full or offline, or the use
of "CLOSE ALL" in the procedure.

33 Unable to create or open a temporary file with which to process
this &DATA block. Check for insufficient access on the current
directory.

34 A Primos command statement is required as an argument to the &DATA
directive.

35 The Primos command invoked by this &DATA block has read all
supplied input data and is requesting more. To suppress this
message and continue execution using terminal input, use the &TTY
directive.

37 The token "text" was found where the keyword "&MESSAGE" was
expected.

38 An illegal option keyword has been found in this &DEBUG directive.

39 Insufficient storage was available to complete processing of this
statement. Reduce the depth of nesting of the CPL program, or the
length and/or number of local variables.

40 A reference to the undefined variable "text" has been found in
this statement.

41 The text following "text" in this statement contains a syntax
error in a variable reference.

42 The end of the CPL procedure file was reached before the logical
end of the procedure. One or more &DO, &SELECT, or &DATA
directives does not have a matching &END statement.

43 The initial-value, &TO or &BY expression in this numeric "&D0"
directive has a non-numeric value.

44 Local command variables are not available at command level.

45 This line contains a command function reference, but the command
function was not successfully invoked.

46 The token "text" was found where either &WHEN or &OTHEIWISE was
expected.

Second Edition B-4

CPL ERROR MESSAGES

47 The keyword "SWHEN" may only be used in the "&SELECT" directive.

48 The keyword "&OTHEIWISE" may only be used as the directive
immediately following the last "&WHEN" of a "&SELECT" directive.

49 This command may only be invoked as a command function.

50 The token "text" was found in the options field of this "&SIGNAL"
directive. The only option supported is "&NO_JlETaRN".

51 The token "text" has been found in the options field of this
"&EXPAND" directive. The only options supported are "ON" and
"OFF".

52 "text" is not a directive recognized by CPL.

53 Abbreviation expansion is enabled for this statement, but the
expansion could not be successfully performed.

54 Too many variables have been placed on the watchlist.

55 The &RESULT directive may only be executed in a CPL program
invoked as a command function.

56 The label or routine name "text" could not be found in this CPL
procedure. It was used as the target of a &GOTO, &CALL, or
&RCUTINE directive elsewhere in the procedure.

1001 A null argument (two successive semicolons) was found in this
&ARGS directive.

1002 This &ARGS directive contains a syntax error which most likely
is an invalid or missing delimiter character.

1003 An illegal option argument name (keyword) has been found in this
&ARGS directive.

1004 Repeat counts (indicated by *) are not presently implemented in
the &ARGS directive.

1005 An unrecognized data type name has been found in this &ARGS
directive.

1006 Internal CPL error: a bad state was encountered during parse of
this &ARGS directive. Please contact your system administrator.

1007 A word or token in this &ARGS directive exceeds the
implementation maximum limit of 1024 characters.

1008 In this &ARGS directive, an object argument specifier appears to
the right of one or more option argument (keyword) specifiers.
All object arguments must appear to the left of the first option
argument.

B-5 Second Edition

19.0

DOC4302-190

1014 The default value specified for an argument in this &ARGS
directive is not the correct data type.

1015 In this &ARGS directive, a default value has been specified for
a data type for which default values are not supported.

1017 In this &ARGS directive, a default value expression contains an
undefined variable reference, or a syntax error in a variable
reference.

1018 In this &ARGS directive, the data type UNCL has been specified
more than once or for an option (keyword) argument. The UNCL
data type may be used only for a single object argument.

1019 This &ARGS directive contains a global variable name (a name
starting with " . ") . Only local variable names may appear in an
&ARGS directive.

1020 This &ARGS directive contains an illegal variable name.

1021 The &ARGS directive does not accept numeric option arguments.
Option arguments must contain at least one alphabetic character.

Second Edition B-6

c
Running GPL

Programs as
Batch Jobs

PUNNING CPL PROGRAMS AS_Bî CH_JOBS

To run a CPL program as a Batch job, use the command:

JOB pathname {-CPL} {Batch_options} {-ARGS CPL_arguments}

pathname i s the pathname of the CPL job, with or without the .CPL
suff ix .

Batch w i l l look for pathname.CPL. If i t f inds i t , i t runs the f i l e as
a CPL job. If Batch doesn ' t find pathname.CPL, i t looks for pathname.
If i t finds pathname, i t runs i t as a command input (COMINPUT) f i l e .

The -CPL option may be used t o force Batch t o run a f i l e as a CPL f i l e ,
whether i t ends in .CPL or not .

This option may be placed in the command l i n e , or in the $$ JOB l ine
within the CPL f i l e i t s e l f . (If a $$ JOB l ine i s used, i t must be the
f i r s t non-comment l i n e of the CPL f i l e .)

C-l Second Edition

DOC4302-190

Batch-options are the usual options tha t govern control of Batch jobs:

-ACCT information

-CPTIME (seconds)
(NONE)

-ETIME (minutes!
(NONE)

-HOME pathname

-PRIORITY value

-QUEUE queuename

-RESTART (YES)
(NO)

For information on these options, see the Prime User ' s Guide or the
PRIMPS Commands Reference Guide.

Note

Batch's -FUNIT option cannot be used with CPL programs. File
units for CPL jobs are allocated dynamically.

The -ARGS option is used to pass arguments to the CPL program.
Everything (except comments when abbrev processing is on) following the
word -ARGS is passed as arguments to the CPL program when it is run.
For this reason, the -ARGS option must be the last option on the
command line or in the $$ JOB line. If any Batch options follow the
-ARGS option, they will be ignored by Batch and passed to the CPL file
instead.

JOB DISPLAYS FOR CPL JOBS

The JOB -DISPLAY command tells whether a job is a regular job (that is,
a OOMINPUT file), or a CPL job. Displays for CPL jobs begin with the
words "Cpl job". If the -ARGS option was used, the arguments are shown
as the final line of the display (or before "Accts:" if -ACCT was
specified).

Second Edition C-2

FUNNING CPL PROGRAMS

An Example

Assume a CPL program, named TEST.CPL, that contains the following &ARGS
statement:

&ARGS WHATrTREE; HOWMANY:DEC = 0

This program might be run and displayed as follows:

OK, JOB TEST -ARGS SMITHXFESTBED 50

[JOB rev 18.1]
Your job, #00009, was submitted t o queue Normal-1.
Home=<ADVERT>JONES >BATCH_JCBS
OK, JOB -DISPLAY
[JOB rev 18.1]

Cpl job TEST(#00009), user JCNES executing (queue Normal-1).
Submitted today a t 9:05:49 a.m., i n i t i a t e d today a t 9:05:58 a.m.
Funit=6, p r io r i ty=5 , cpu limit=None, elapsed limit=None.
Args: SMITH>TESTBED 50
OK,

FUNNING CPL PROGRAMS AS PHANTOMS

Any CPL program t h a t does not request terminal input can be run as a
phantom job, using the command:

PHANTOM pathname [cpl-arguments]

Two points should be noted:

• You cannot use the PHANTOM command's FUNIT argument when running
a CPL program as a phantom job. If you t ry t o do so, the funit
speci f ica t ion i s passed as an argument to the CPL program.
(PRIMOS a l loca te s f i l e un i t s dynamically for CPL programs, thus
guarding against conf l i c t s .)

• A CPL program running as a phantom does not need t o use the
LOGOUT command to log out the phantom. The &RETURN d i rec t ive 1 9 Q
(implici t or exp l i c i t) which concludes a CPL program causes the
phantom t o log out in an orderly fashion.

C-3 Second Edition

D
GOMINPUTand

CPL Compared

This appendix explains the similarities and differences between CPL
programs and command input files (COMMPUT files). It also
illustrates, by means of several sample programs, how command input
files may be converted into CPL programs.

COMPARISONS

The questions that arise when comparing CPL files (or programs) and
command input files are:

1. How are the files executed?

2. How do they execute other files and programs?

3. What commands can they execute?

4. What special commands must they contain?

5. How can they control the execution of the commands they
contain?

6. What error-handling capabilities do they have?

D-l Second Edition

DOC4302-190

7. What use can they make of variables?

8. What use can they make of user-defined abbreviations?

9. How do they handle interactive utilities (such as ED and SEG)
and user programs?

The answers to these questions are given below.

Execution of CPL and COMINPUT Files

CPL programs are executed by the RESUME or CPL commands. For example:

R PROG

Command input files are executed by the COMINPUT command. For example:

CO FILE.COMI

Execution of Programs by CPL and COMINPUT Files

CPL programs use the RESUME or CPL commands to execute other CPL
programs and R-mode user programs. They use SEG to execute V-mode and
I-mode user programs, and BASIC or BASICV to execute BASIC programs.
(CPL programs cannot use the COMINPUT command. Therefore, they cannot
execute COMINPUT fi les .)

CPL programs do not need to specify the f i l e units on which other
programs are to be opened. The CPL interpreter assigns the units
automatically.

Similarly, CPL programs do not need to close the f i l e units after the
programs they call have finished running. The CPL interpreter closes
them automatically.

Command input f i les use the COMINPUT command to execute other command
f i l e s . They execute R-mode programs and CPL programs with the RESUME
command; they execute V-mode and I-mode programs with SEG; and they
execute BASIC programs with BASIC or BASICV.

The command input f i l e MUST specify the f i l e unit on which the called
command f i l e i s to be opened, and must use the CLOSE comand to close
the f i l e unit when the called command f i l e has finished running.

Second Edition D-2

COMINPUT AND CPL COMPARED

What Commands Can Be Used?

CPL programs can contain (and execute) any PRIMDS commands except:

• COMINPUT
• CLOSE ALL

• DELSEG ALL

Command input files can contain any PRIMDS command except:

• CLOSE ALL
• DELSEG ALL

Special Commands Needed

There are no special commands needed in a CPL file. (A CPL program
always ends with a &RETJRN statement, but the CPL interpreter will add
that statement for you if you don't put it in yourself.)

Command input files must end with CO -END, CO -TTY, or CO -CONTINUE.

Control of Execution

CPL programs can control the execution of the commands they contain by
evaluating flow-of-control directives, such as &IF, &D0, and &GOTO,
contained in the CPL programs. (These directives are explained in
Chapters 2, 8, and 9.)

Command input files allow no control of execution. They must execute
every command they contain, in the order in which the commands appear
in the file.

Error Handling

CPL programs may use PRIMOS's default mechanisms for error handling,
severity code handling, and condition handling. Or, they may use CPL
directives and/or subroutines to define their own error handling,
severity code handling, and condition handling. (See Chapter 15 for
details.)

Command input files must use PRIMOS's default mechanisms for error and
condition handling.

D-3 Second Edition

DOC4302-190

Use of Variables

CPL programs can use both local and global var iab les , as explained in
Chapter 4 . Command input f i l e s can use only global va r iab les . They
must use PRIMOS's SET_VAR command t o s e t or change the value of these
va r i ab les .

Use of Abbreviations

CPL's &EXPAND di rec t ive allows commands t o be passed from CPL f i l e s t o
the abbreviation preprocessor for expansion. Thus, users can use t h e i r
own abbreviations for PRIMDS commands and t h e i r arguments inside CPL
f i l e s , as well as a t command l eve l .

Command input f i l e s cannot use the abbreviation preprocessor. The
commands they contain can use system-defined abbreviat ions only.

Use of Interact ive U t i l i t i e s and User Programs

CPL f i l e s handle in te rac t ive u t i l i t i e s and user programs in th ree ways:

• If the command tha t invokes the program or u t i l i t y appears by
i t s e l f (for example: SBG), the CPL in te rp re te r invokes the
program or u t i l i t y , and t ransfers control t o the user a t the
terminal . The user provides the data needed by the u t i l i t y .
When the user leaves the u t i l i t y (for example, by typing QUIT or
FILE), control returns t o the CPL program.

• If the command tha t invokes the u t i l i t y or user program i s
preceded by a &DATA direc t ive (for example, &DATA SEG), the CPL
in te rpre te r constructs a temporary f i l e t o contain the data (or
subcommands) needed by the program or u t i l i t y . Construction of
the temporary f i l e terminates when the CPL in te rp re te r reads an
SEND d i r ec t ive . When the temporary f i l e i s complete, the CPL
in te rpre te r invokes the u t i l i t y or user program and gives i t the
data or commands contained in the temporary f i l e .

Note

If the CPL program is attached to one directory when it
begins execution of the &DATA group, and to another
directory at the end of the &DATA group, it cannot
delete its temporary file. The file therefore remains
in the directory in which it was created.

• If the &DATA group contains a &TTY directive immediately
preceding the &END directive, the temporary file is built, the
utility or program invoked, and the data or commands from the
temporary file passed to it. When the end of the temporary file

Second Edition D-4

COMINPUT AND CPL COMPARED

is reached, control passes to the user at the terminal. When
the user finishes with the program or utility, the CPL file
resumes control.

CPL programs may also request specific items of information from the
user during their execution by the use of the QUERY and RESPONSE
functions (explained in Chapter 5).

Command input files do not distinguish between commands that invoke
utilities and other commands.

• A utility is invoked when the command that invokes it is read.

• Once the utility has been invoked, succeeding commands in the
COMINPUT file are passed to the utility until some command
relinquishes control of the utility.

• If a CO -TTY command appears during this time, control passes to
the user at the terminal. If the user types CO -CONTINUE while
still inside the utility, the command file resumes passing
commands to the utility. If the user leaves the utility and
then types CO -CONTINUE, the COMINPUT file resumes passing
commands to PRIMOS.

SAMPLE FILES

Here are some sample command input files. To demonstrate the
comparison between command input files and CPL files, each file has
been rewritten twice: once as a CPL file without variables, once as a
CPL file with variables.

A Simple File

Here i s a s imple command f i l e , CJTEST, t h a t compiles and loads a
FORTRAN program:

/•BEGIN TEST OF COMMAND FILE
COMOUTPUT 0_TEST
DATE
/•COMPILE THE PROGRAM IN 64V MODE
FTN FTN.TEST -64V
/*LOAD THE PROGRAM
SEG
VLOAD #FTN.TEST
LO B__FTN.TEST
LI
SA
MAP M_LOADTEST 7
MAP M_UNSATISFIED 3

D-5 Second E d i t i o n

DOC4302-190

QU
/•COMMAND FILE TEST COMPLETED
DATE
COMO -END
CO -END

I f C_TEST were r e w r i t t e n a s a CPL program, i t would look l i k e t h i s :

/*BEGIN TEST OF COMMAND FILE
OOMOUTPUT 0_TEST
DATE
/•COMPILE THE PROGRAM IN 64V MODE
FTN FTN.TEST -64V
/*LOAD THE PROGRAM
&DATA SEG /*First change
VLOAD #FTN.TEST
LO B_FTN.TEST
LI
SA
MAP M_LOADTEST 7
MAP M_UNSATISFIED 3
QU
&END /*Second change
/•COMMAND FILE TEST COMPLETED
DATE
COMO -END

With the addition of variables, and the use of the new filename
conventions, you would get:

&ARGS WHAT : TREE = TEST
OOMOUTPUT TEST.COMO
DATE
FTN %WHAT% -64V
&DATA SEG -LOAD /* Let SEG create default filename
LO %WHAT%
LI
SA
MAP %WHAT%.MAP 7
MAP %WHAT%.UNSAT 3
QU
&END

DATE
COMO -END

Second Edition D-6

COMINRJT AND CPL COMPARED

Command F i l e s That Run Other Command F i l e s

The -CONTINUE o p t i o n of COMINPUT a l lows command f i l e s t o be cha ined .
The fo l lowing example i l l u s t r a t e s t h e cha in ing of t h r e e command f i l e s ,
and shows how f i l e u n i t c o n f l i c t s can be avoided . The command f i l e
C_GO c o n t a i n s t h e fo l lowing commands:

/ * COMPILE THE PROGRAM IN 64V MODE
FTN FTN.TEST -64V
/* LOAD THE PROGRAM
COMINPUT C_LOADTEST 7
CLOSE 7
/* RETURN COMMAND TO USER TERMINAL
COMINPUT -TTY

The command f i l e C_LOADTEST c o n t a i n s t h e fo l lowing commands:

/ * LOADTEST COMMAND FILE
SEG
VLOAD #FTN.TEST
LO B_FTN.TEST
LI
SA
QU
COMINPUT CJMAPS 10
CLOSE 10
COMINPUT -CONTINUE

The command f i l e C_MAPS c o n t a i n s t h e fo l lowing commands:

/ * GET FULL MAP AND UNSATISFIED REFERENCES
SEG
VLOAD * #FTN.TEST
MAP M_LOADTEST 7
MAP M_UNSATISFIED 3
QU
/ * RETURN TO 'CALLING1 COMMAND FILE
COMINPUT -CONTINUE 7

The c a l l s and r e t u r n s involved i n t h i s sequence a r e much s imple r
wi th CPL f i l e s . The CPL v e r s i o n s of t h e s e t h r e e f i l e s would
look l i k e t h i s :

/ * GO.CPL, a t r a n s l a t i o n of C_GO
/ * Compile t h e program in 64V mode
FTN FTN.TEST -64V
/ * Load t h e program
R LOADTEST

D-7 Second Edition

DOC4302-190

/*LOADTEST COMMAND FILE, CPL version
&DATA SEG / * Add &DATA di rec t ive

VLOAD #FTN.TEST
LO B_FTN.TEST
LI
SA
QU

&END / * Add &END direc t ive
R MAPS.CPL / * Resume replaces CO

/ * Remove CLOSE command
&RETORN / * Change CO -CONTINUE to (optional) &RETORN

/ * MAPS.CPL, a CPL version of C_MAPS
/ * Get f u l l map and unsat isf ied references
&DATA SEG / * Add &DATA di rec t ive
VLOAD * #FTN.TEST
MAP M_JJ0ADTEST 7
MAP M_UNSATISFIED 3
QU
&END / * Add SEND di rec t ive
/ * Return t o ' c a l l i n g s ' " program

&RETURN / * This l ine i s optional

If the three f i l e s wanted t o pass the name of a local var iab le
among themselves, they could do tha t as wel l :

/ * New version of GO.CPL
&ARGS WHAT : TREE = TEST
/ * Compile program
FTN %WHAT% -64V
/* Pass program name to LOADTEST.CPL
R LOADTEST %WHAT%

/* New version of LOADTEST.CPL
&ARGS WHAT
&DATA SEG -LOAD
LO %WHAT%
LI
SA
QU
&END /* End &DATA group

/* Pass argument to third CPL program
R MAPS.CPL %WHAT%

Second Edition D-8

GOMINRJT AND CPL COMPARED

/ * New v e r s i o n of MAPS.CPL
&ARGS WHAT
&DATA SBG

VLOAD * %WHAT% / * SBG looks fo r f i l e ending i n .SEG
MAP %WHAT%.MAP
MAP %WHAT%.UNSAT
QU
&END / * End &DATA group

/ * Control re turns t o LOADTEST.CPL automatically

A FINAL KPTE

If a pathname begins with a quotation mark, COMINPUT programs assume
the closing quotation mark. If the programmer forgets to type the
closing quotation mark, the COMINPUT program supplies it. CPL
programs, on the other hand, neither assume nor supply the final
quotation mark. If you have pathname problems when you convert a
COMINPUT program to a CPL program, check the pathnames to be sure that
each opening quotation mark is balanced by a final quotation mark.

D-9 Second Edition

E
Global Variable

Routines

INTRODUCTION

Two routines a re avai lable for the accessing and s e t t i ng of global
variables from inside a user program. GV$SET se t s the value of a
global var iab le , and G7$GET re t r i eves the value.

GV$SET and GV$GET rout ines , as shown, use PL/I data types and
declarat ion statements. Data type conversions for FORTRAN and COBOL
are shown a t the end of t h i s appendix.

The Primos command DEFINE_GVAR must be used t o define the global
var iable f i l e before e i the r of these two procedures i s ca l l ed .

G7$SET

G7$SET allows a user to se t the value of a global va r iab le . I t s
ca l l ing sequence i s :

DCL GV$SET ENTRY (CHAR(*) VAR, CHAR(*) VAR, FIXED BIN)

CALL GV$SET (var-name, var-value, code)

var-name i s the name of the global var iable t o be s e t . This name must
toilow the rules for CPL global var iable names. All l e t t e r s must be
upper case.

E-l Second Edition

DOC4302-190

var-value i s the new value of the var iable var-name.

code i s a re turn error code. E$BFTS i s returned i f the specified value
i s too big . E$UNOP i s returned i f the global var iable area i s bad or
un in i t i a l i zed . E$ROOM i s returned if an attempt t o acquire more
storage by the var iable management routines f a i l s .

GV$GET

GV$GET re t r ieves the value of a global var iable . I t s ca l l ing sequence
i s :

DCL GV$GET ENTRY (CHAR(*) VAR, CHAR(*) VAR, FIXED BIN, FIXED BIN)

CALL GV$GET (var-name, var-value, value-s ize , code)

var-name i s the name of the global var iable whose value i s t o be
re t r ieved. The name must follow the rules for CPL global var iable
names and must be in upper case.

var-value i s returned value of var iable var-name.

value-size i s the length of the u s e r ' s buffer var-value in characters .

code i s a return error code. E$BFTS i s returned i f the user buffer
var-value i s too small t o hold the current value of the var iab le .
F$UNOP i s returned if the global var iable storage i s un in i t i a l i zed or
in bad format. E$FNTF i s returned i f the var iable i s not found.

DATA-TYPE CONVERSIONS FOR FORTRAN AND COBCL

The CHAR(*) VAR Data Type

The PL/I data type "char(*) var" i s a varying-length character s t r i n g .
The f i r s t word of such a var iable contains the length of the character
s t r ing currently stored by the var iab le . The remaining words contain
the s t r ing i t s e l f . (Note tha t the user does not supply the length;
the PL/Ir or PLIG, compiler, determines the length of the s t r i ng
i t s e l f , and updates the f i r s t word accordingly.)

FORTRAN Equivalent of CHAR(*) VAR; The FORTRAN equivalent of the
"char(*) var" data type i s an integer ar ray . The f i r s t word of the
array must s tore the length of the s t r ing t o be passed. The other
words in the array s tore the s t r ing i t s e l f , 2 characters per word.
(Thus, a s t r i ng 32 l e t t e r s long would require an array of 17 words.)

Second Edition E-2

GLOBAL VARIABLE ROUTINES

COBOL Equivalent of CHAR(*) VAR; COBOL programs should create a record
structure in which the first word contains the length of the character
string to be passed, while the remaining words contain the character
string itself.

The FIXED BIN Data Type

The FORTRAN equivalent of FIXED BIN is MTEGER*2. The COBOL equivalent
is COMP.

E-3 Second Edition

Index

% 2-5

&ARGS directive:
format of 2-5, 13-1
multiple arguments 2-6
omitted arguments 2-6

&BY clauses, in loops 9-7

&CALL directive 14-3

&CHECK directive 15-4

&DATA groups:
&TTY directive 2-19
CPL programs invoked from
defined 2-18
terminal input in 2-19

&DEBUG directive 10-1

&DEBUG:
&ECHO 2-2, 10-2
&EXECUTE 10-2
&NQ_ECHO 10-2
&NCLEXECUTE 10-2
ScNOJWATCH 10-2
&OFF 10-2
in routines 10-1

&DO &ITEMS loops 7-10, 9-14

&DO &LIST loops 7-10, 9-11

&DO &UOTIL loops 9-10

&D0 &WHILE loops 9-9

&DO groups 2-15

&DO loops 9-1

&ECHO 10-1, 10-3, 10-4

&ELSE directive:
5-7 diagram of 2-12

format of 2-10

&EXEOJTE 10-2, 10-3

&EXPAND d i rec t ive 11-7

&GOT0 d i rec t ive 2-17

&GOT0s, and rout ines 14-5

&IF d i r e c t i v e :
diagrammed 2-11
format of 8-1
nested 2-10, 8-3
simplest form 2-7

X-l Second Edition

DOC4302-190

use of EXISTS function with
2-15

use of NULL function with

2-13

&IF statements 8-1

&IF statements, nested 8-3

&ITEMS loops 7-10, 9-14

&LABEL directive 2-17

&LIST loops 7-10, 9-11

&MESSAGE directive 5-1, 5-9

&NO_ECHO 10-3, 10-4

&NQ_EXECUTE 10-2, 10-3

&NQ_WATCH 10-3, 10-5

&ON directive 15-6

&REPEAT loops 9-11

&RESULT directive 14-8

&RETURN directive 2-24, 3-4,
14-6, 14-7, 15-5

&REVERT directive 15-7

&R0UTINE directive 14-2, 15-7

&SELECT directive 8-6, 8-9

&SELECT, variable references in
8-9

&SETVAR directive 4-1, 11-2

&SEVERITY directive 10-6, 15-3

&SIGNAL directive 15-8

&STOP directive 14-6, 14-7,
15-5

&TO clauses, in loops 9-7

&TTY directive 2-19, 5-1

&TTY directive:
conditional use of 2-20

&TTY_CONTINUE directive 2-23,
5-1

SWATCH 10-3, 10-5

+ (Wild character) 7-5

@ (Wild character) 7-5

@@ (Wild character) 7-5

ABBREV 2-1, 11-7

Abbreviations:
in CPL programs 11-7
used to invoke CPL programs
2-2

AFTER function 7-2, 12-4

Arguments:
default specification 6-2
default values for 13-5
defined by position 2-6
in CPL 13-2
multiple 2-6
null, handling of 13-3
object 13-2
omitted 2-6
option 13-6
REST type 13-8
supplied to CPL programs 2-5
type checking 6-2
types of 6-3, 13-4
UNCL type 13-8

Arithmetic expressions 12-2

Arithmetic operators 2-9,
11-8, 12-1 , 12-2

ATTRIB function 12-7

Batch execution of CPL programs
C-l

Batch jobs C-l

Second Edition X-2

INDEX

BEFORE func t ion 7 - 2 , 12-4

Boolean o p e r a t o r s 2-9

Boolean v a l u e s 12-1

Braces , i n documentat ion x i

B r a c k e t s :
for func t ion c a l l s 1-6
i n documentation x i

CALC func t ion 12-1

CALC f u n c t i o n , i m p l i c i t c a l l s on
11-8

CALC f u n c t i o n , use of 12-2

C a l l i n g r o u t i n e s 1 4 - 2 , 14-3

CHAR, type of argument 6-3

CHARL, type of argument 6-3

Check hand l ing 1 5 - 3 , 15-4

CMDNCO (system commands
d i r e c t o r y) 1-2

CND_INPO f u n c t i o n 12-11

COMINRJT f i l e s D-l

COMINKJT f i l e s , i npu t from 5-6

Command inpu t s tream 5-5

Commands:
ABBREV 2-2
CPL 1-2
DEFINE_GVAR 4 - 6 , 4 - 7 , 11-3
DELETE_VAR 4 - 6 , 4 -10 , 11-3
in CPL programs 2 - 1 , 2-4
LISTVAR 4 - 6 , 4 -10 , 11-3
RESUME 1-2
SET_VAR 4 - 6 , 4 - 8 , 11-2
TYPE 5-8

Comments i n CPL programs 3-3

Conca tena t ion :
of command l i n e s 3 - 3 , 3-4
of s t r i n g s 3-7

of v a r i a b l e s 2 - 6 , 4-4

Condi t ion hand l ing 15-6

Condi t ion mechanism 15-6

Convent ions:
f i lename 7-1
i n examples x
used i n t h i s book x

CPL:
command 1-2
d i r e c t i v e s 1-3
e r r o r s 2-23
f e a t u r e s 1-8
i n t e r p r e t e r 1-3 , 1-4
invoking programs 1-2
language 1-3
program names 1-2
s u b s e t s of 1-8
s u f f i x 1-2, 2 -1

DATE func t i on 1-5 , 12-11

DATE, type of argument 6-3

Debugging CPL programs 10-1

DEC, type of argument 6-3

Decrementing counted loops 9-6

Defau l t checking, for arguments
6-5

Defau l t e r r o r hand l ing 15-1

Defau l t s p e c i f i c a t i o n , for
arguments 6-2

Defau l t v a l u e s for arguments
13-5

DEFINE_GVAR command 4 - 6 , 4 - 7 ,
11-3

Defining f u n c t i o n s 14-8

Defining g l o b a l and l o c a l
v a r i a b l e s 2 - 5 , 11-2

X-3 Second E d i t i o n

DOC4302-190

Defining variables, with &ARGS
directive 2-5

DELETEJVAR command 4-6, 4-10,
11-3

DIR function 12-7

Directives:
&ARGS 2-5, 13-1
&CALL 14-2
&CHECK 15-4
&DATA 1-8
&DEBUG 10-1
&DO 2-15
&ELSE 2-10
&EXPAND 11-7
&GOTO 2-17
&IF 2-7
&LABEL 2-17
&MESSAGE 5-9
SON 15-6
&RESULT 14-8
&RETURN 2-24, 14-6, 14-7,
15-5

&REVERT 15-7
&ROUTINE 14-2, 15-7
&SELECT 8-5, 8-9
&SET_VAR 4-1, 11-2
&SEVERITY 10-6, 15-3
&SIGNAL 15-8
&STOP 14-6, 14-7, 15-5
&TTY 2-19
&TTY_GONTINUE 2-23
flow-of-control 8-2
handled by CPL interpreter
1-6

DO groups 2-15

Echo/no_echo, for debugging
10-4

Echoing commands in CPL programs
2-2

Ellipsis, in documentation xi

Ending routines 14-6

ENTRY, type of argument 6-3

ENTRYNAME function 12-7

Equality, testing for 2-8,
4-5, 11-8

Equals sign 2-9, 3-4, 12-1

Error handling:
default 2-23
in subroutines 10-7
user specified 10-6, 15-2

Error messages B-l

Evaluation:
a t PRIMDS command level 11-7
impl ic i t c a l l s on CALC 11-8
of ar i thmet ic expressions

12-1
of Boolean r e l a t i o n s 12-1
of expressions 11-7
of functions 11-4
of quoted s t r i ngs 11-6
of var iables 11-3
precedence in 12-1
within a CPL program 11-8

Execute/no_execute, for
debugging 10-2

Execution of loops 8-2

Execution, Batch C-l

EXISTS function 12-8

Expressions, evaluation of
11-1 , 11-7, 12 -1 , 12-2

External procedures 14-1

F i l e I/O 9-16

File system functions 12-7

Filename conventions 7-1

Filenames for CPL programs 3-4

Flags, in option arguments 13-6

Flow of control 2-7

Second Edition X-4

INDEX

Flow-of-control d i rec t ives 8-2,
9-1

Format rules 3-1

Function Calls:
defined 2-13
evaluated by CPL interpreter
1-5

format of 11-3
in &IF statements 2-13

Func t ions :
AFTER 7 - 2 , 12-4
ATTRIB 12-7
BEFORE 7 - 2 , 12-4
CALC 12-1
CNELINFO 12-11
DATE 12-11
DIR 12-7
ENTRYNAME 12-7
e v a l u a t i o n of 11-4
EXISTS 2-14 , 12-8
GET_VAR 12-12
GVPATH 12-8
HEX 12-3
INDEX 12-5
LENGTH 12-5
MOD 12-3
NULL 2 - 1 3 , 12-5
OCTAL 12-3
OPEN_FILE 12-8
PATHNAME 12-9
QUERY 5 - 2 , 12-12
QUOTE 1 1 - 5 , 12-5
READ_FILE 12-9
RESCAN 11-6 , 12-12
RESPONSE 5 -4 , 12-13
SEARCH 12-5
SUBST 12-6
SUBSTR 12-5
supp l i ed by CPL 11-3
TO_HEX 12-4
TO_OCTAL 12-4
TRANSLATE 12-6
TRIM 12-6
UNQUOTE 1 1 - 5 , 12-6
use r -de f ined 14-8
VERIFY 12-7
WILD 7 -6 , 12-9
WRITE_JTLE 12-10

GETJVAR f u n c t i o n 12-12

Global variables 4-6, 11-2

GOTO 2-17

Grouping statements:
&DATA groups 2-18
&DO groups 2-15

GV$GET routine E-2

GV$SET routine E-l

GVPATH function 12-8

HEX function 12-3

HEX, type of argument 6-3

High-level Languages:

programming concepts x, 1-3

IF statements:
diagram of 2-11
format of 2-7

IF_THEN_ELSE statements:
diagrammed 2-12
format of 2-10
with function c a l l s 2-13

Incrementing counted loops 9-2,
9-6

Indentation of l i ne s in CPL
programs 3-2

INDEX function 12-5

Inequali ty, t e s t i ng for 2-8,
4-5 , 11-8

Integer values for var iables
4-3

In ternal procedures 14-1

Invocation of rout ines 14-3 ,
14-4

LENGTH function 12-5

X-5 Second Edition

DOC4302-190

L1ST_VAR command 4-6, 4-10,
11-3

Local var iables 4 -5 , 11-2

Logical expressions 12-2

Logical operators 2-9, 12-1,
12-2

Logical values for variables
4-4

Loop formats 8-2

Loops 9-1

Loops, execution of 8-2

Loops:
&BY clauses 9-7
&DO &ITEMS 7-10, 9-14
&DO &LIST 7-10, 9-11
&DO &UNTIL 9-10
&DO &WHILE 9-9
&REPEAT 9-11
&TO clauses 9-7
counted 9-7
counted, execution of 9-7
decrementing 9-7
formats of 8-2
incrementing 9-2, 9-7
nested 9-5
with f i l e 1/0 9-16

Lower case, in documentation x

Main procedures 14-1

Miscellaneous functions 12-11

MOD function 12-3

Multiple arguments 2-5

Names:
of CPL programs 1-2
of global variables 4-7

Nested loops 9-5

Nesting routines 14-5

No_execute, debugging technique
10-2

NULL function 2-13, 12-5

Null strings:
explicit 2-6
handling of 13-3
removed by command processor
2-6

supplied for omitted arguments
2-6

Object arguments 13 -1 , 13-2

OCT, type of argument 6-3

OCTAL function 12-3

Omitted arguments 2-6

OPEN_FILE function 12-8

Operators 2-8 , 12-1

Operators, preceded and followed
by spaces 3-4

Option arguments 13-1, 13-6

Output, as seen on terminal 2-2

Passing severity codes 15-4

PATHNAME function 12-9

Percent signs 1-4, 2-5

Phantom execution of CPL
programs C-3

Phantoms C-3

Placement of routines 14-4

Positional arguments 6-5,
13-2, 13-2

Precedence of operators 12-1

PRIMOS commands:
ABBREV 2-2
in CPL programs 1-3, 1-4,
2-1, 2-4

Second Edition X-6

INDEX

not available for CPL 2-4

PRIM3S:
information on 1-3
interaction with CPL 1-3

Procedures 14-1

PTR, type of argument 6-3

QUERY function 5-1, 5-2, 12-12

QUOTE function 11-5, 12-5

Quoted strings 3-5, 11-4

Quoted strings, evaluation of
11-6

Quoting strings 3-5

Reading f i l e s 9-16

READ_FILE function 12-9

Relational operators 2-9, 12-2

RESCAN function 11-6, 12-12

RESPONSE function 5 - 1 , 5-4,
12-13

REST arguments 13-8

REST, type of argument 6-3 ,
6-6

RESUME (command) 1-2

Routines, in CPL 14-1

Routines:
calling 14-3
ending 14-3, 14-6
nesting 14-5
placement of 14-4

Running CPL programs:
as Batch jobs C-l
as phantoms C-3
interactively 1-2

Scope of &SEVERITY directive
10-8

Scope of variables 14-3

SEARCH function 12-5

Semicolons:

as command delimiters 3-1
to separate arguments 2-6

Sequential execution of CPL
programs 2-7

SET_VAR command 4-6, 4-8, 11-2

Severity codes 10-6, 15-1

Severity codes, passing 15-4

SEVERITY? 15-1, 15-5

SINGLE option, to WILD function
7-8

Square brackets 1-6

Statement, CPL 3-2

String functions 12-4

String values for variables 4-3

Strings:
concatenation 2-6, 3-7
quoting 3-5
unquoting 3-7

Structured programming concepts
1-3

Subsets of CPL 1-8

SUBST function 12-6

SUBSTR function 12-5

Suffixes:
CPL 1-2
filename 7-1

Switches, option arguments as
13-6

X-7 Second Edition

DOC4302-190

Syntax, summary of A-l

Terminal display of CPL programs
2-2

Terminal input:
from QUERY function 5-2
from RESPONSE function 5-4
in &DATA groups 2-19

Terminal output:
from &MESSAGE directive 5-9
from &RETURN directive 14-6
from &STOP directive 14-6
from TYPE command 5-8

Termination of routines 14-3

Tilde (~) 3-3

TO_HEX function 12-4

TOJOCTAL function 12-4

Transfer of control between CPL
programs 2-24

TRANSLATE function 12-6

TREE, type of argument 6-3

TRIM function 12-6

Type checking, for arguments
6-2, 6-5, 13-3

TYPE command 5-2, 5-8

Types, of arguments 13-4

UNCL arguments 13-8

UNCL, type of argument 6-3

Underlined words:
in command formats x
in examples x

UNQUOTE function 11-5, 12-7

Unquoting s t r ings 3-7

Upper case, in documentation x

User-defined functions 14-8

Using ABBREV f i l e s 11-7

Variable names 11-2

Variable names, rules for 3-4

Variable references:
concatenating 2-6
defined 2-5
evaluated by CPL in te rpre te r

1-4
inside function c a l l s 1-5
use of percent signs with 1-4

Variable watching 10-5

Variables:
defined 11-2
evaluation of 11-3
global 4-6
handled by CPL in te rp re te r

1-4
in &SELECT d i rec t ives 8-9
in CPL programs 2-5
Integer values for 4-3
local 4-5
logical values for 4-4
names v s . values 2-5
s t r ing values for 4-3
used by routines 14-3

VERIFY function 12-7

Watch/No_watch, debugging
technique 10-5

Wild characters 7-5

WILD function 7-6, 12-9

WILD function, options for 7-7

Wildcards 7-4

WRITE_FILE function 12-10

Writing f i l e s 9-16

Second Edition X-8

INDEX

Writing functions 14-8

A (Wild character) 7-5

X-9 Second Edition

	Front Cover
	Title Page
	i
	Copyright
	ii
	Printing History
	iii
	Contents
	v
	vi
	vii
	viii
	About This Book
	ix
	x
	xi
	Part I
	The Basic Subset
	Chapter 1
	Introduction
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	1-9
	1-10
	Chapter 2
	The Basics of CPL
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	Chapter 3
	CPL Format
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	Part II
	The Intermediate Subset
	Chapter 4
	Variables in CPL
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	Chapter 5
	Terminal Input and Output in CPL
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	Chapter 6
	Arguments With Type-checking and Default Values
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	Chapter 7
	Processing Groups of Files
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	Chapter 8
	Decision-making in CPL Programs
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	Chapter 9
	Loops in CPL
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	Chapter 10
	Debugging and Error Handling in CPL
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	10-8
	Part III
	Full CPL
	Chapter 11
	Expression Evaluation in CPL
	11-1
	11-2
	11-3
	11-4
	11-5
	11-6
	11-7
	11-8
	11-9
	Chapter 12
	Command Functions
	12-1
	12-2
	12-3
	12-4
	12-5
	12-6
	12-7
	12-8
	12-9
	12-10
	12-11
	12-12
	12-13
	Chapter 13
	Arguments
	13-1
	13-2
	13-3
	13-4
	13-5
	13-6
	13-7
	13-8
	13-9
	13-10
	Chapter 14
	Writing Subroutines and Functions in CPL
	14-1
	14-2
	14-3
	14-4
	14-5
	14-6
	14-7
	14-8
	Chapter 15
	Error and Condition Handling in CPL
	15-1
	15-2
	15-3
	15-4
	15-5
	15-6
	15-7
	15-8
	Appendix A
	Syntax Summary
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	Appendix B
	CPL Error Messages
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	Appendix C
	Running CPL Programs as Batch Jobs and Phantoms
	C-1
	C-2
	C-3
	Appendix D
	COMINPUT and CPL Compared
	D-1
	D-2
	D-3
	D-4
	D-5
	D-6
	D-7
	D-8
	D-9
	Appendix E
	Global Variable Routines
	E-1
	E-2
	E-3
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8
	X-9

